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Abstract

A family of local spectral evolution kernels (LSEKs) are derived for analytically integrating a class of partial differ-

ential equations (PDEs)
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The LSEK can solve the above PDEs with x-independent coefficients in a single step. They are utilized in operator

splitting schemes to arrive at a local spectral time-splitting (LSTS) method for solving more general linear and/or non-

linear PDEs. Like previous local spectral methods, this new method is of controllable accuracy in both spatial and tem-

poral discretizations, and it can be of spectral accuracy in space and arbitrarily high-order accuracy in time. Its

complexity scales as O(N) at a fixed level of accuracy. It is explicit, time transverse invariant, unconditionally stable

for many problems whose two split parts are both analytically integrable. It adopts uniform grid meshes. The proposed

method is extensively validated in terms of accuracy, stability, efficiency, robustness and reliability by the Fokker–

Planck equation, the Black–Scholes equation, the heat equation, the plane wave propagation, the Zakharov system,

and a linear harmonic oscillator. Numerical applications are considered to Fisher�s equation, the generalized nonlinear

Schrödinger equation, the Bose–Einstein condensates, and the Schrödinger equation in the semi-classical regime.

Numerical results compare well with those in the literature.
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1. Introduction

Most real world problems are of multi-physics, multi-component and multi-time scale in nature. Dynam-

ics of such problems are often governed by nonlinear partial differential equations (PDEs) that do not ad-

mit analytical solutions. Numerical simulations of these problems are indispensable and challenging. A
fully coupled implicit scheme which yields to the resolution of strongly nonlinear systems would be the most

desirable approach. It is, however, often out of reach due to the required large computer memory and CPU

time. Consequently, alternative approaches are necessary. One approach is to adopt semi-implicit and even

explicit schemes. However, a wide range of time scales induce the stiffness in time integration. A typical case

is a reaction, diffusion, and convection system where the slowest process determines the time step and the

stability of the time integration. In such cases, schemes based on error estimates and local time adaptation

are used. Another possible approach is to analyze a reduced system with fewer unknowns and lower dimen-

sional kinematics. Special care has to be paid in carrying out the reduction. However, for fully coupled
problems, it is fundamental to keep the information about global coupling.

A major class of efficient alternative approaches are based on time splitting methods, also called operator

splitting or fractional step methods [1–3]. Most natural splitting schemes are frequently constructed accord-

ing to either physical components and subsystems, such as density, velocity, energy and pressure, or phys-

ical processes, such as reaction, diffusion and convection, or dimension, such as in the alternating direction

implicit method [4]. Sometimes, these splitting methods might be associated with semi-Lagrangian or Eule-

rian–Lagrangian methods [1] as the advection equation is solved by along a characteristic path. These split-

ting algorithms may suffer from two main disadvantages [5,6]: splitting error in the composite algorithm
and determination of boundary conditions for the split equations. Intermediate boundary conditions are

exploited for the split equations [7,8]. Splitting errors of time splitting methods have been analyzed by a

number of researchers [9–11]. For an operator equation of the form
o

ot
u ¼ ðL1 þ L2Þu;
most widely used time splitting schemes are the Lie formulae
expðL1tÞ expðL2tÞ; expðL2tÞ expðL1tÞ

and the Strang formulae [12]
expðL1t=2Þ expðL2tÞ expðL1t=2Þ; expðL2t=2Þ expðL1tÞ expðL2t=2Þ:
There will be no splitting error if operators L1 and L2 are commutable. High-order time-splitting schemes

[13] can be constructed to reduced splitting errors in the Lie and the Strang formulae.

Some time splitting methods are designed under geometric consideration. For example, symplectic algo-

rithms are constructed to preserve Poincaré invariants of classical Hamiltonian systems in long time inte-

gration. Time splitting methods are frequently employed as a means to attain higher order symplectic

algorithms [14–17]. These methods are crucial to nonlinear integrable systems such as the sine-Gordon

equation and the nonlinear Schrödinger equation that admit homoclinic orbits in their phase space geom-
etry, which poses a severe challenge to their numerical integration [18–20]. Ablowitz et al. [19] have argued

that being symplectic alone is not sufficient to guarantee the correctness of the solution and the preservation

of the invariants. Numerically induced chaos can be produced by some symplectic algorithms for com-

pletely integrable systems when the initial value is chosen close to a homoclinic orbit. High-order discret-

ization in both space and time are particularly important. Many high-order symplectic time-splitting

schemes have been proposed [15–17]. For example, Forest and Ruth [15] have constructed a fourth-order

time-splitting method to better preserve the Poincaré invariants. A systematic procedure was proposed by

Yoshida [16] for attaining arbitrarily high even order time-splitting methods.
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Many other time splitting methods are designed to take the advantage of operator diagonalization. For

example, the time evolution equation for the wavevector W(x, t) of a quantum particle
i�h
o

ot
W¼ � �h2

2m
o2

ox2
Wþ V ðxÞW
can be split according to the kinetic energy operator (i.e., L1 = �(�h2/2m)(o2/ox2), where ⁄ is the Planck con-

stant divided by 2p and m is the mass of the particle), and the potential energy operator L2 = V(x). The
kinetic energy operator is diagonal in the momentum representation (or basis), which can be treated by

the Fourier collocation method, while its potential energy operator is diagonal in the position representa-

tion, which can be realized by on-grid interpolations. Consequently, a time splitting between these two

non-commutable operators leads to an explicit numerical method that is unconditionally stable. In fact,

the magic of unconditionally stable can be achieved for any split system whose all subsystems are analyt-

ically integrable. For many PDEs, the key for success is to integrate the time evolution equation involving

spatial derivatives analytically so as to bypass the Courant–Friedrich–Lewy (CFL) constraint. This can be

conventionally done by using the Fourier pseudospectral (FP) method, i.e., the Fourier collocation method.
The resulting scheme is called Fourier pseudospectral time splitting (FPTS) method [21,22]. The FPTS has

found its success in solving the complex Ginzburg–Landau equation [23], the Schrödinger equation

[21,24,25], the Korteweg–de Vries (KdV) equation [26–28] and three-dimensional (3D) Maxwell�s equations
[29]. Recently, Bao, Jin and their collaborators have successfully applied the FPTS method for the Zakha-

rov system [31], Bose–Einstein condensation [32,33] and the Schrödinger equation in the semiclassical re-

gime [34]. The FPTS is very efficient, powerful and attractive because of its spectral accuracy in space

and unconditional stability in time. However, the FPTS is based on the Fourier pseudospectral method that

is restricted to periodic boundary conditions and simple geometries. As such, it cannot be applied to many
realistic problems. For other simple boundary conditions, such as Dirichlet, Neumann and unbound

boundary conditions, Chebyshev, Legendre, Laguerre or Hermite polynomial may be used to construct

spectral bases for the time evolution equation [32,35,36]. Lazaridis et al. [35] constructed a time-splitting

Gauss–Hermite algorithm for fast and accurate simulation of soliton propagation by using chirped

Gauss–Hermite functions. Kremp et al. [36] proposed an interesting time-splitting Gauss–Hermite colloca-

tion method for solving the nonlinear Schrödinger equation. The efficiency of these methods was compared

with the FPTS. Common features of global spectral bases are that they are of spectral accuracy and extre-

mely high efficiency whenever applicable, but have limited flexibility in handling complex and/or mixed
boundary conditions.

In general, spectral methods are global in nature, which means that they approximate a function and/or

its derivatives at a point by using the information at all the points in the domain [37–47]. Consequently,

they have full matrices and their approximation errors for analytical functions decay exponentially with

respect to the increase in the number of grid points N [44–46]. With the aid of the fast Fourier transform

(FFT) technique, the number of operations for the Fourier spectral method scales as O(N logN) for differ-

entiation. Indeed, they are some of the most efficient and powerful methods for scientific and engineering

computations whenever they are applicable [37–47]. However, the major limitations of spectral methods are
their lack of flexibility for different boundary conditions and complex geometry, and stability for explicit

time integration due to non-uniform meshes. For example, problems with multiple complex boundary con-

ditions arisen in structural analysis, such as plate and shell vibrations where differential equations of order

4–8 (even 12 in some cases) are frequently encountered [48], are mostly inaccessible to spectral methods in

general due to their global nature. Spectral element methods are designed to overcome the problem of

limited ability of spectral methods for complex geometries [49,50,43]. They work extremely well on rela-

tively simple geometries but are not yet as robust as finite element, finite difference and finite volume

methods in handling arbitrary geometries. Moreover, except for Fourier pseudospectral methods, most
other spectral methods adopt non-uniform grid points, such as Laguerre–Gauss–Radau points and
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Chebyshev–Gauss–Lobatto points [44]. These grid points typically produce the smallest grid spacing essen-

tially proportional to O(1/N2), here N is the total number of grid points in a given interval, and thus induce

a severe stability requirement of Dt � (1/N2) for convection and Dt � (1/N4) for diffusion. Consequently, it

is impractical to use non-uniform grid spectral methods in the explicit integration of evolution PDEs. Fur-

thermore, the matrix constructed by using global spectral methods for the solution of an elliptic differential
equation is full and usually has a high condition number, which often leads to numerical instability. Much

of the current research in spectral methods focuses on relieving spectral methods� limitations on boundary

condition, geometry and stability.

Recently, a family of local spectral (LS) methods, also called the discrete singular convolution (DSC)

[51,52], were proposed as a natural generalization of the global spectral methods to overcome the limita-

tions of classic spectral methods, while to maintain the spectral accuracy. It provides a framework for a

unified description of Galerkin, collocation and finite difference methods [53]. Since collocation schemes

can be regarded as generalized finite differences, the DSC collocation has been shown to be a generalized
finite difference scheme [53]. Nevertheless, it goes far beyond the standard finite difference scheme. The DSC

provides a wavelet collocation approach to singular convolutions, including the distributions of the delta

type d(n), using locally confined kernels. The DSC algorithm has its root in the theory of distribution

and wavelet analysis. It has found its success in many applications, such as the solution of nonlinear equa-

tions [20,67,54], structural analysis [52,55–57], compressible and incompressible fluid flows [56,58–60], elec-

tromagnetic wave propagation and scattering [61–63] and image analysis [64]. The DSC is the only

available numerical method for the prediction of thousands of high-frequency vibration modes in beams,

plates and shells [65,66], for which other existing methods encounter numerical instability. Moreover, a
DSC-based conjugate filter scheme has been shown to provide some of the best results for the interaction

of shock and high frequency entropy waves [59], which is another example that other existing methods have

difficulty. Indeed, the DSC algorithm has spectral methods� accuracy [54,67–69] and local methods� flexibil-
ity for complex boundary condition [52,57,65] and moderately complex geometry [58,60].

The objective of the present paper is to introduce a novel local spectral method for being used in the time

splitting formulation. A family of local spectral evolution kernels (LSEKs) are constructed to analytically

integrate the evolution equation of the form
o

ot
u ¼ L1u ¼ AðtÞ o2

ox2
þ BðtÞ o

ox
þ CðtÞ

� �
u;
with a positive real part of A (Re(A) P 0). Unconditionally stable local spectral time splitting (LSTS) meth-

ods can be obtained if the remaining evolution equation of the form (o/ot)u = L2u is also analytically inte-
grable. The LSTS is of spectral accuracy in space and can be arbitrarily high order in time when it is

implemented with an appropriate high-order time-splitting scheme proposed by Yoshida [16]. The local

spectral evolution kernels are constructed from Hermite functions. However, unlike standard global Her-

mite spectral methods [32,35], the LSEKs adopt uniform grids and have banded matrices, just like other

DSC kernels. In fact, the length of the grid stencil, and thus the accuracy of the LSEK can be controlled

according to the needs of the problem of interest, which is another feature of the DSC inherited from wave-

let analysis. The major advantage of the present LSTS method is its ability for handling arbitrary boundary

conditions and flexibility for moderately complex geometry.
This paper is organized as the follows. Section 2 is devoted to the method and algorithm of the LSTS.

The LSEKs are derived and time splitting schemes are briefly reviewed. In Section 3, we investigate the

accuracy, stability, computing time and parameter dependence of the LSTS. The latter is extensively vali-

dated by a comparison with the FPTS method over a number of linear and nonlinear PDEs, including the

Fokker–Planck equation, the heat equation, the free plane wave propagation, the Zakharov system and a

quantum harmonic oscillator. In Section 4, we apply the LSTS to the solution of Fisher�s equation, the
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nonlinear Schrödinger equation, the Gross–Pitaevskii equation for Bose–Einstein condensation and the

Schrödinger equation in the semi-classical regime. The numerical results in this section are compared with

those in the literature. This paper ends with a conclusion.
2. Theory and algorithms

In this section, the local spectral method is briefly reviewed, which serves as a basis and establishes nota-

tion for the new time splitting method. A Hermite function representation of the time evolution operator is

derived. Dispersion analysis is carried out to better understand the behavior of the LSEK. High-order local

spectral time-splitting (LSTS) methods are given.

2.1. Local spectral methods

Discrete singular convolution (DSC) is a general framework for constructing local spectral methods. It

provides discrete approximations to the singular convolution
f ðlÞðxÞ ¼
Z

dðlÞðx� x0Þf ðx0Þ dx0 ðl ¼ 0; 1; 2; . . .Þ; ð1Þ
where d(x) is the delta distribution. As the delta distribution does not have a value anywhere, its approx-

imation is necessary so that it can be digitized in a computer. Approximations of both positive type and

Dirichlet type are described in the literature [70,71]. Some of the approximations, such as the Shannon
(sinc) kernel and the Dirichlet kernel, essentially give rise to the classic Fourier spectral methods. Some

of local spectral kernels [51] are constructed by regularizing the Shannon kernel
dh;r ðx� xkÞ ¼
sin p

h ðx� xkÞ
p
h ðx� xkÞ

exp �ðx� xkÞ2

2r 2

" #
ð2Þ
and the Dirichlet kernel
dh;r ðx� xkÞ ¼
sin p

h ðx� xkÞ
� �

ð2M 0 þ 1Þ sin p
h

x�xk
2M 0þ1

h i exp �ðx� xkÞ2

2r 2

" #
; ð3Þ
where M 0 is a parameter and h is the grid spacing. A regularized Lagrange kernel (RLK) [72],
dh;r ðx� xkÞ ¼
Yi¼kþM 0

i¼k�M 0;i6¼k

x� xi
xk � xi

exp �ðx� xkÞ2

2r 2

" #
; ð4Þ
was constructed by regularizing the classic Lagrange polynomial. However, the implementation of the RLK

is entirely different from that of the classic Lagrange polynomial [46]. Many other DSC kernels are given in

[51,52]. A function and its derivatives can be approximated by the DSC algorithm as
f ðlÞ
M ;r ðxÞ ¼

dl

dxl
XM
k¼�M

dh;r ðx� xkÞf ðxkÞ; l ¼ 0; 1; 2; . . .

¼
XM
k¼�M

dðlÞ
h;r ðx� xkÞf ðxkÞ;

ð5Þ
where 2M + 1 is the length of the stencil and {xk} are centered around x.
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The error estimation of the regularized Shannon kernel has been given by Qian [68].

Theorem 1. [68] Let f(x) be a function f 2 L1(R) \ L2(R) \ Cl(R) and bandlimited to B, (B < (p/h)), l 2 Z+,

r = rh > 0, M 2 N, M P ðlr=
ffiffiffi
2

p
Þ. Then
f ðlÞ � f ðlÞ
M ;r

��� ���
L1ðRÞ

6 b exp � a2

2r2

� �
; ð6Þ
where
a ¼ minfM ; r2ðp� BhÞg; ð7Þ

b ¼ eprðlþ 1Þ!
hlpa

ffiffiffiffiffiffi
2B

p
kf kL2ðRÞ þ 2rkf kL1ðRÞ

	 

:

Here N is the number of the grid points. The L1 error given by Eq. (6) decays exponentially with respect to the

increase of the DSC band width M.

Proof 1. See Ref. [68]. h

The local spectral kernels can also be constructed by using the classical polynomial approximation to the

delta distribution. Korevaar [73] constructed a Hermite function approximation of the delta distribution in
his classic work ‘‘Pansions and the theory of Fourier transforms’’. Independently, Hoffman et al. [74]

derived the approximation and an expression for its arbitrary derivatives. Let us define the Hermite func-

tion as
hnðxÞ ¼ expð�x2ÞHnðxÞ;

where Hn(x) is the classic Hermite polynomial. Assume that the delta distribution be expressed in terms as a

series of the Hermite function
dr ðxÞ ¼
X1
n¼0

cnhn
xffiffiffi
2

p
r

� �
ð8Þ
coefficient cn can be found by
Hnð0Þ ¼
Z 1

�1
dr ðxÞHn

xffiffiffi
2

p
r

� �
dx ¼

X1
m¼0

cm

Z 1

�1
exp � x2

2r 2

� �
Hm

xffiffiffi
2

p
r

� �
Hn

xffiffiffi
2

p
r

� �
dx

¼
X1
m¼0

cmdn;m2
mm!

ffiffiffi
2

p
r ; ð9Þ
where the orthogonality of the Hermite polynomials
R1
�1 Hn0 ðxÞHmðxÞe�x2 dx ¼ dn;m2

mm!
ffiffiffi
p

p
has been used.

By means of the Hermite number Hn(0),
Hnð0Þ ¼
ð�1Þn=2n!
ðn=2Þ! ; n even;

0; n odd;

(
ð10Þ
one obtains
cn ¼
1
r � 1

4

� �n=2 1

ð2pÞ1=2ðn=2Þ!
; n even;

0; n odd:

(
ð11Þ
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Therefore, the Hermite function representation of the delta distribution is
dr ðxÞ ¼
1

r

X1
n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!
h2n

xffiffiffi
2

p
r

� �
: ð12Þ
By using (dl/dxl)hn(x) = (�1)lhn + l(x), an expression for the lth order derivative of dr (x) is obtained
dðlÞ
r ðxÞ ¼ ð�1Þl

2l=2r lþ1

X1
n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!
h2nþl

xffiffiffi
2

p
r

� �
; l ¼ 0; 1; 2; . . . ð13Þ
These kernels are continuous and admit the formal relation f ðlÞðxÞ ¼
R1
�1 dðlÞ

r ðx� x0Þf ðx0Þ dx0, which is unde-

sirable for numerical computations. For practical computations, the summation in Eq. (9) has to be trun-

cated to a finite number, say Mh/2, just like in any other spectral method. Moreover, the integration needs

to be discretized. It turns out that dðlÞ
r ðxÞ works extremely well on a uniform grid. One therefore replaces the

integration by a summation: � ! h
P

. As a result, the Hermite local spectral kernels are given by
dðlÞ
h;r ðx� xkÞ ¼

ð�1Þlh
2l=2r lþ1

XMh

n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!
h2nþl

x� xkffiffiffi
2

p
r

� �
; l ¼ 0; 1; 2; . . . : ð14Þ
Implemented in the samemanner as otherDSC kernels, given by Eq. (5), the Hermite local spectral kernel has
been applied to the solution of the Fokker–Planck equations [75], incompressible and compressible Navier–

Stokes equations [59]. Some mathematical analysis of the Hermite local spectral kernel was given in [76].

2.2. Local spectral evolution kernels

A family of local spectral evolution kernels (LSEKs) are constructed in this section for the analytical

integration of evolution PDEs of the form
o

ot
f ðx; tÞ ¼ L1f ðx; tÞ ¼ AðtÞ o2

ox2
þ BðtÞ o

ox
þ CðtÞ

� �
f ðx; tÞ; ð15Þ
where A, B and C are functions of time, while Re(A) P 0. The formal solution of Eq. (15) can be given as
f ðx; tÞ ¼
Z

dx0 Kðx; x0; t; t0Þf ðx0; t0Þ; ð16Þ
where K(x, x 0, t, t 0) is an evolution operator, defined as
Kðx; x0; t; t0Þ ¼ x exp

Z t

t0
L1 dt

� �








x0

� �
: ð17Þ
Here the standard Dirac notation [77] is used and Æf |gæ is defined as
hf jgi ¼
Z

f �ðxÞgðxÞ dx; ð18Þ
where Æf | = f* is a ‘‘bra vector’’ and |gæ a ‘‘ket-vector’’.

The most important property of the evolution operator is stated in the following theorem.

Theorem 2. The evolution operator K in its position representation K(x, x 0, t, t 0) has a toeplitz matrix, i.e.,
Kðx; x0; t; t0Þ ¼ Kðx� x0; t; t0Þ:
Proof 2. By means of the wavenumber operator k = �i(d/dx), one can rewrite L1 as
L1 ¼ �AðtÞk2 þ iBðtÞkþ CðtÞ: ð19Þ
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By using the orthonormality of the wavenumber basis �|kæÆk| dk = 1, we may write
Kðx; x0; t; t0Þ ¼
Z

dk x exp

Z t

t0
L1 dt

� �








k

� �
kjx0h i: ð20Þ
Since the wavenumber basis |kæ is the eigenfunction of the wavenumber operator k, we write
x exp

Z t

t0
L1 dt

� �








k

� �
¼ exp �At

t0k
2 þ iBt

t0k þ Ct
t0

� �
xjkh i; ð21Þ
where we denote X t
t0 ¼

R t
t0 X ðsÞ ds for X = A, B and C. Therefore, the evolution operator can be written as
Kðx; x0; t; t0Þ ¼
Z

dk exp �At
t0k

2 þ iBt
t0k þ Ct

t0
� �

hxjkihkjx0i: ð22Þ
Since the matrix of operator k in the position representation is given by
hxjkjx0i ¼ �i
d

dx
dðx� x0Þ; ð23Þ
we can obtain an explicit expression for the transfer matrix Æx|kæ via
khxjki ¼ hxjkjki ¼
Z

dx0 hxjkjx0ihx0jki ¼ �i

Z
dx0

d

dx
dðx� x0Þhx0jki ¼ �i

d

dx
hxjki: ð24Þ
The solution to this differential equation with an appropriate normalization is
hxjki ¼ 1ffiffiffiffiffiffi
2p

p eixk: ð25Þ
By substituting Eq. (25) into Eq. (22), we have
Kðx; x0; t; t0Þ ¼ 1

2p

Z
dk exp �At

t0k
2 þ iðx� x0 þ Bt

t0 Þk þ Ct
t0

� �
: ð26Þ
For At
t0 6¼ 0, the above integration can be carried out by using a Gaussian integral,
Z

dx expð�ax2 þ bxÞ ¼
ffiffiffi
p
a

r
exp

b2

4a

� �
; ReðaÞ > 0: ð27Þ
For At
t0 ¼ 0, the integration in Eq. (26) can be carried out directly. Therefore, the evolution operator can be

written as
Kðx; x0; t; t0Þ ¼
1ffiffiffiffiffiffiffiffi
4pAt

t0
p exp � ðx�x0þBt

t0 Þ
2

4At
t0

þ Ct
t0

� �
ðA 6¼ 0Þ;

d x� x0 þ Bt
t0

� �
exp Ct

t0
� �

ðA ¼ 0Þ

8><
>:

¼ Kðx� x0; t; t0Þ: �

ð28Þ
With the aid of Theorem 2, we can consider a Hermite function representation of the evolution operator

K(x � x 0, t) by using dh,r (x),
Kh;r ðx; t; t0Þ ¼
Z

dx0 Kðx� x0; t; t0Þdh;r ðx0Þ ð29Þ

¼
Z

dx0 Kðx� x0; t; t0Þ h
r

XMh

n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!
h2n

x0ffiffiffi
2

p
r

� �

¼ h
r

XMh=2

n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!

H 2nðx; t; t0Þ; ð30Þ
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where
H 2nðx; t; t0Þ ¼
Z

dx0 Kðx; x0; t; t0Þh2n
x0ffiffiffi
2

p
r

� �
: ð31Þ
To arrive at an explicit expression for the local spectral evolution kernel Kh, r (x, t, t
0), we need the following

theorem.

Theorem 3. The Hermite function h2n(x) is invariant under the action of the evolution operator K(x, x 0, t, t 0).

Proof 3. For A = 0, the integration in Eq. (31) can be carried out directly by using the result of Theorem 2

to give H2nðx; t; t0Þ ¼ eC
t
t0h2nð

xþBt
t0ffiffi

2
p

r
Þ. We therefore consider the case of A 6¼ 0. From Eq. (17), K(x, x 0, t, t 0) can

also be written as
Kðx; x0; t; t0Þ ¼ dðx� x0Þ exp At
t0
d2

dx02
þ Bt

t0
d

dx0
þ Ct

t0

� �
; ð32Þ
where use is made for the orthogonality of the position basis Æx|x 0æ = d(x � x 0). Combining Eqs. (31) and

(32), one obtains
H 2nðx; t; t0Þ ¼ exp At
t0
d2

dx2
þ Bt

t0
d

dx
þ Ct

t0

� �
h2n

xffiffiffi
2

p
r

� �
: ð33Þ
By using the generating formula of the Hermite function,
hnðxÞ ¼ ð�1Þn dn

dxn
expð�x2Þ; ð34Þ
and the fact that the nth derivative with respect to x commutes with expðAt
t0

o2

ox2 þ Bt
t0

o
ox þ Ct

t0 Þ, one can rewrite

H2n(x, t, t
0) as
H 2nðx; t; t0Þ ¼ ð
ffiffiffi
2

p
r Þ2n d2n

dx2n
exp At

t0
d2

dx2
þ Bt

t0
d

dx
þ Ct

t0

� �
exp � x2

2r 2

� �
: ð35Þ
By using f(x) = �dx 0 d(x � x 0)f(x 0), one may write
H 2nðx; t; t0Þ ¼ ð
ffiffiffi
2

p
r Þ2n d2n

dx2n

Z
dx0 dðx� x0Þ exp At

t0
d2

dx2
þ Bt

t0
d

dx
þ Ct

t0

� �
exp � x02

2r 2

 !
: ð36Þ
Combining Eqs. (32) and (36), we have
H 2nðx; t; t0Þ ¼ ð
ffiffiffi
2

p
r Þ2n d2n

dx2n

Z
dx0 Kðx; x0; t; t0Þ exp � x02

2r 2

 !
: ð37Þ
By substituting the result of Theorem 2 in Eq. (28) for K(x, x 0, t, t 0), one obtains
Z
dx0 Kðx; x0; t; t0Þ exp � x02

2r 2

( )
¼ 1ffiffiffiffiffiffiffiffiffiffi

4pAt
p exp �ðxþ Bt

t0 Þ
2

4At
t0

þ Ct
t0

( )Z
dx0 exp �C1x0

2 þ C2x0
n o

; ð38Þ
where
C1 ¼
1

2r 2
þ 1

4At
t0
; C2 ¼

xþ Bt
t0

2At
t0

: ð39Þ
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By using the Gaussian integral, one attains
Z
dx0 Kðx; x0; t; t0Þ exp � x02

2r 2

 !
¼ eC

t
t0

r
r t

exp �ðxþ Bt
t0 Þ

2

2ðr t
t0 Þ

2

 !
; ð40Þ
where, we denote
ðr t
t0 Þ

2 ¼ r 2 þ 2At
t0 :
Substituting Eq. (40) into Eq. (37), one obtains
H 2nðx; t; t0Þ ¼ ð
ffiffiffi
2

p
r Þ2neCt

t0
r
r t
t0

d2n

dx2n
exp �ðxþ Bt

t0 Þ
2

2ðr t
t0 Þ

2

 !
: ð41Þ
By using the generating formula (34),
H 2nðx; t; t0Þ ¼
eC

t
t0 r

r t
t0

	 
2nþ1

h2n
xþBt

t0ffiffi
2

p
r t
t0

� �
; A 6¼ 0;

eC
t
t0h2n

xþBt
t0ffiffi

2
p

r

	 

; A ¼ 0: �

8>><
>>: ð42Þ
With Theorem 3 and Eq. (30), the LSEK can be explicitly given by
Kh;r ðx; t; t0Þ ¼
h
r
eC

t
t0
XMh=2

n¼0

� 1

4

� �n
1ffiffiffiffiffiffi
2p

p
n!

r
r t
t0

� �2nþ1

h2n
xþ Bt

t0ffiffiffi
2

p
r t
t0

 !
: ð43Þ
The case of A = 0 can be recovered by setting r t
t0 ¼ r .

The following corollary extends some of these results to other DSC kernels.

Corollary 1. For A = 0, the LSEK takes the form of
Kh;r ðx; t; t0Þ ¼ eC
t
t0 dh;r xþ Bt

t0
� �

; ð44Þ
where dh,r (x) can be any one of the DSC kernels given by Eqs. (2)–(4) and dð0Þ
h;r of Eq. (14).

Proof 4. The proof follows from Eq. (29) and Theorem 2. h

In fact, an exact solution is readily available for Eq. (15).

Corollary 2. The evolution PDE given in Eq. (15) admits an exact solution
f ðx; tÞ ¼ eC
t
t0

r
r t

exp �ðxþ Bt
t0 Þ

2

2ðr t
t0 Þ

2

 !
; ð45Þ
providing that the initial value takes the form
f ðx; 0Þ ¼ exp � x2

2r 2

� �
: ð46Þ
Proof 5. The proof follows from Eqs. (16) and (40). h

Remark 1. Many exact solutions associated with other initial values can be derived by using the present

procedure.

Remark 2. A simplification of Kh, r (x, t, t
0) occurs when A, B and C are independent of time, i.e., X(t) = X

for X = A, B and C. Then, X t
t0 ¼ X ðt � t0Þ ¼ XDt, and Kh, r (x, t, t

0) = Kh, r (x, t � t 0) = Kh, r (x, Dt).
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Remark 3. When A = B = C = 0, the LSEK reduces to the local spectral interpolation kernel, dð0Þh;r ðx� xkÞ,
given in Eq. (14).

Remark 4. In general, Eq. (15) does not admit an exact solution for an arbitrary initial function f(x, t 0).
Then the solution f(x, t) of Eq. (15) at an arbitrary space–time position (x, t) can be analytically

approximated by
f ðx; tÞ ¼
XM
k¼�M

Kh;r ðx� xk; t; t0Þf ðxk; t0Þ; ð47Þ
or for a grid point (xj, t)
f ðxj; tÞ ¼
XM
k¼�M

Kh;r ðkh; t; t0Þf ðxj � kh; t0Þ: ð48Þ
The LSEK is implemented in the same manner as other local spectral kernels, given by Eq. (5). Note that
the CFL constraint does not apply to Eq. (48). In fact, both forward and backforward time evolutions can

be resolved by using the LSEK as long as Reðr t
t0 Þ P 0 for a given t.

Remark 5. The LSEK can be easily generalized to an arbitrarily high dimension by the tensorial product.
For example, in 2D, one has
f ðxi; yj; tÞ ¼
XMx

kx¼�Mx

XMy

ky¼�My

Khx;r xðkxhx; t; t0ÞKhy ;r y ðkyhy ; t; t0Þf ðxi � kxhx; yj � kyhy ; t0Þ; ð49Þ
where definitions of quantities with subscripts are self-evident. The LSEK provides a convenient tool for

constructing local spectral time splitting methods. Its parameter dependence is studied next.
2.3. Analyses of the LSEK

The properties of the LSEK are analyzed in this section. Dispersion analysis via the Fourier transform is

a classic approach for characterizing digital filters and computational schemes. Both infinite and discrete

Fourier transforms can be used. Since numerical computations are carried out on discrete grids, the discrete

Fourier transform is more appropriate for the understanding of many numerical properties, such as trun-

cation errors. The behavior of the LSEK is determined by three functions in the evolution PDEs, A, B and
C, and by the DSC parameters, Mh, M and r . As C(t) simply causes exponential decay or growth and its

effect is obvious, we set C(t) = 0 in the Fourier analysis. We therefore discuss the discrete Fourier analysis

for four different combinations of A and B: (1) A(t) = B(t) = C(t) = 0; (2) B(t) = C(t) = 0 and A(t) is a real-

valued function; (3) B(t) = C(t) = 0 and A(t) is a purely imaginary function; (4) C(t) = 0 and B(t) 6¼ 0. In the

rest of this section, the magnitude of the frequency response is defined as jK̂h;r ðx Þj, where K̂h;r ðx Þ denotes
the discrete Fourier transform of the LSEK, Kh,r (x, t, t

0), given in Eq. (43).

2.3.1. A(t) = B(t) = C(t) = 0

As mentioned in Remark 3, when A(t) = B(t) = C(t) = 0, the property of the LSEK is just that of the

local spectral interpolation kernel dð0Þ
h;r . Unlike most global spectral methods that admit irregular mesh

nodes computed according to the roots of the highest degree polynomial, local spectral methods employ

a uniform grid mesh. Consequently, the scaling parameter r has to been chosen appropriately so that an

optimal computational efficiency can be achieved. For a given Mh, an optimal r can be found according

to the central frequency p/h. Specifically, for different Mh, one takes r /h = r, where r varies according to

Mh. Table 1 gives a summary of recommended r values for a wide range of Mh values (1 6Mh 6 200).



Table 1

Recommended r = r /h values for different Mh

Mh r

1 0.70

2 0.80

3 0.90

4 1.00

5 1.05

6 1.10

7 1.15

8 1.18

9 1.22

10 1.27

11 1.30

12 1.34

13 1.37

14 1.40

15 1.43

16 1.47

17 1.50

18 1.54

19 1.57

20 1.60

21 1.62

22 1.64

23 1.66

24 1.68

25 1.70

26 1.72

27 1.75

28 1.78

29 1.80

30 1.82

31 1.84

32 1.87

33 1.89

34 1.91

35 1.94

36 1.96

37 1.98

38 2.01

39 2.05

40 2.08

41 2.10

42 2.11

43 2.13

44 2.15

45 2.18

46 2.20

47 2.23

48 2.26

49 2.28

50 2.30

Mh r

51 2.32

52 2.34

53 2.36

54 2.38

55 2.40

56 2.42

57 2.45

58 2.47

59 2.49

60 2.51

61 2.53

62 2.55

63 2.57

64 2.59

65 2.61

66 2.63

67 2.65

68 2.67

69 2.69

70 2.71

71 2.73

72 2.75

73 2.77

74 2.80

75 2.82

76 2.84

77 2.86

78 2.88

79 2.90

80 2.92

81 2.94

82 2.95

83 2.96

84 2.98

85 3.00

86 3.02

87 3.04

88 3.05

89 3.06

90 3.07

91 3.09

92 3.11

93 3.13

94 3.15

95 3.17

96 3.19

97 3.20

98 3.22

99 3.24

100 3.25

Mh r

101 3.27

102 3.28

103 3.30

104 3.32

105 3.33

106 3.34

107 3.35

108 3.37

109 3.38

110 3.40

111 3.42

112 3.44

113 3.45

114 3.46

115 3.47

116 3.48

117 3.49

118 3.51

119 3.53

120 3.55

121 3.56

122 3.58

123 3.59

124 3.60

125 3.61

126 3.63

127 3.64

128 3.66

129 3.67

130 3.69

131 3.70

132 3.71

133 3.72

134 3.74

135 3.75

136 3.77

137 3.78

138 3.79

139 3.80

140 3.81

141 3.83

142 3.85

143 3.86

144 3.87

145 3.89

146 3.90

147 3.91

148 3.93

149 3.94

150 3.95

Mh r

151 3.96

152 3.98

153 3.99

154 4.01

155 4.02

156 4.04

157 4.06

158 4.07

159 4.08

160 4.09

161 4.10

162 4.11

163 4.12

164 4.14

165 4.15

166 4.16

167 4.17

168 4.18

169 4.19

170 4.20

171 4.22

172 4.23

173 4.24

174 4.25

175 4.26

176 4.28

177 4.29

178 4.30

179 4.31

180 4.33

181 4.34

182 4.35

183 4.36

184 4.37

185 4.38

186 4.39

187 4.41

188 4.42

189 4.43

190 4.44

191 4.45

192 4.47

193 4.48

194 4.49

195 4.50

196 4.51

197 4.52

198 4.54

199 4.55

200 4.57
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In practical applications, a three percent derivation from the recommended r values will not significantly

change the computational result. In the rest of this section, we setMh = 88, h = 0.3125 and r = 3.05h, unless

specified.

2.3.2. A(t) is a real-valued function and B(t) = C(t) = 0

The frequency responses of the LSEK with different At
t0 are plotted in Fig. 1. As one can see, when At

t0

equals zero or is very small, the LSEK is almost an ideal low-pass filter, which suggests that the LSEK

is stable and is of spectral accuracy. When At
t0 becomes larger, the frequency response becomes narrower.

It is interesting to note that this does not cause the loss of accuracy of the LSEK method for integrating the

diffusion equation. Because when A(t) is a real-valued function, the dynamics of the diffusion process as-

sures that the high frequency components of the solution vanish after a certain time period. The decay rates

of the high frequency components of both the LESK and the solution of the diffusion equation (62) are

studied. Their frequency responses are compared in Fig. 2 by setting A(t) = D, where D is the diffusion coef-
ficient. It can be seen that the frequency response of the solution is always within the boundary of that of

the LSEK. As time or At
t0 increases, the frequency response of the solution becomes narrower and narrower
Fig. 1. The frequency responses of the LSEK when B(t) = C(t) = 0 (M = 64, Mh = 88). The solid lines from outside to inner are for

At
t0 ¼ 0; 0:001r 2; 0:01r 2; 0:1r 2.

Fig. 2. The comparison of the frequency responses of the LSEK, �solid line�, and the frequency responses of the solution of the Wiener

process, �circle� (M = 64, Mh = 88, B(t) = C(t) = 0, At
t0 ¼ Dðt � t0Þ). (a) At

t0 ¼ 0:001r 2; (b) At
t0 ¼ 0:01r 2; (c) At

t0 ¼ 0:1r 2 and (d) At
t0 ¼ r 2.
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because only low frequency components could survive for a long time diffusion. In addition, the frequency

responses of the LSEK and the solution overlap when time or At
t0 is sufficiently larger.

The frequency responses of the LSEK with different Mh are plotted in Fig. 3, when A(t) = 0. As one can

see, an almost ideal low-pass filter is obtained at Mh = 88. When Mh is smaller than 88, the smaller Mh is,

the narrower the bandwidth of the frequency response is. This is because a largerMh means the use of higher
degree Hermite polynomials that provide a better approximation to high frequency components. However,

for a given r , when Mh is larger than 88, the larger Mh is, the narrower the bandwidth is obtained. This is

an interesting behavior of the Hermite local spectral method. Obviously, the superposition of higher degree

Hermite polynomials cancels the high frequency components of the LSEK. This happens because in our

local spectral method, a uniform mesh is always used, instead of the non-uniform Gauss–Hermite nodes

computed according to the highest degree of the polynomial. Therefore, for a given choice of r , an opti-

mized Mh is quite important in the present local spectral method. Fortunately, there exists essentially a lin-

ear relation between r , and its optimized Mh as shown in Table 1. The frequency responses of the LSEK
with different M are plotted in Fig. 4. It can be seen that M = 32 is good enough to give an accurate

approximation.

2.3.3. A(t) is a purely imaginary function and B(t) = C(t) = 0

The frequency responses of the LSEK with different At
t0 are plotted in Fig. 5. The time evolution of the

frequency responses in this case is quite different from the ones in Fig. 1. When parameters M and Mh are

fixed, the low frequency part of the responses is flat when At
t0 ¼ 0; 0:1ir 2; 0:5ir 2. The increase of At

t0 only
Fig. 3. The frequency responses of the LSEK with different Mh (A(t) = B(t) = C(t) = 0, M = 64). �Solid lines� represent Mh = 22, 44, 88

from innermost to outside; �dash lines� represent Mh = 122,188 from outside to inner.

Fig. 4. The frequency responses of the LSEK with different M. At
t0 ¼ 0:01r 2; BðtÞ ¼ CðtÞ ¼ 0; Mh ¼ 88.



Fig. 5. The frequency responses of the LSEK with different At
t0 ðBðtÞ ¼ CðtÞ ¼ 0; M ¼ 64; Mh ¼ 88Þ. (a) At

t0 ¼ 0; (b) At
t0 ¼ 0:1ir 2;

(c) At
t0 ¼ 0:5ir 2 and (d) At

t0 ¼ ir 2.
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generates some oscillations over small intervals near ±p. In other words, the LS method is capable of pro-

viding spectral accuracy to most problems that do not have a very high frequency component. While when

At
t0 ¼ ir 2, the low frequency part becomes oscillatory, which is due to the truncation. Essentially, a large At

t0

gives rise to a large r t
t0 , and thus a larger spatial extension for a given Hermite polynomial. In such a case,

the fixed spatial support 2M + 1 is no longer large enough and the truncation error becomes evident. The

truncation error can be efficiently reduced by simply increasing M, the half length of the spatial support of

the LSEK. Fig. 6 shows the dependence of the frequency responses on M. It can be seen that the low

frequency parts of the responses are flat and are unity when M = 128 and M = 256. In other words, by
increasing M to a sufficiently large value, the LS method could always approach spectral accuracy in

one time step even when A(t) or time t is very large. On the other hand, M = 128 and M = 256 does not
Fig. 6. The frequency responses of the LSEK with different MðAt
t0 ¼ ir 2; BðtÞ ¼ CðtÞ ¼ 0; Mh ¼ 88Þ. (a) M = 32; (b) M = 64;

(c) M = 128 and (d) M = 256.



Fig. 7. The frequency responses of the LSEK with different MhðAt
t0 ¼ r 2i; BðtÞ ¼ CðtÞ ¼ 0; M ¼ 128Þ. (a) Mh = 22; (b) Mh = 44;

(c) Mh = 88 and (d) Mh = 122.
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make much difference in high frequency edges near ±p. The oscillation in these regions can be explained by

the mismatch of the parameters M and Mh. This fact can also be seen in Figs. 7 and 8. Fortunately, this

does not cause much problems in real applications because the grid spacing h can always be slightly reduced

if the frequency distribution of a physical problem is non-zero at the high frequency edges.
The frequency responses of the LSEK with differentMh, whenM = 128 andM = 64 are plotted in Figs. 7

and 8, respectively. It is seen that in Fig. 7, for a given M, a smaller Mh gives a better approximation to a

narrower range of the frequency distribution. When Mh is sufficiently large as shown in Fig. 7(c), a good

approximation can be achieved by the LS method. However, if Mh is too large, oscillation occurs. Such

oscillation is also due to the truncation. Essentially, for a given r , higher degree Hermite polynomials spa-

tially extend to a larger effective domain and require a larger interval of compact support than do the low
Fig. 8. The frequency responses of the LSEK with different MhðAt
t0 ¼ r 2i; BðtÞ ¼ CðtÞ ¼ 0; M ¼ 64Þ. (a) Mh = 22; (b) Mh = 44;

(c) Mh = 88 and (d) Mh = 122.
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degree Hermite polynomials. This problem can be alleviated in two ways. One way is to use a smaller r so

that the spatial extension of high degree Hermite polynomials is reduced. The other way is to reduce trun-

cation error directly by choosing a larger M.

The oscillation in Fig. 8 is more severe because the support 2M + 1 is relatively too small. Therefore, if a

smaller M is used, a choice of Mh = 44 can even give a better approximation than does Mh = 88 because at
least the low frequency part is less corrupted by the truncation.

2.3.4. C(t) = 0 and B(t) 6¼ 0

The frequency responses of the LSEK with different Bt
t0 , when A(t) = C(t) = 0 are plotted in Fig. 9. It is

seen that the magnitude of the frequency response does not change as Bt
t0 changes. This is because the

change of Bt
t0 can only produce a spatial translation which leads to a phase shift in the frequency responses,

i.e., eix Bt
t0 . Therefore, an arbitrarily large B(t) does not have any impact on the computational accuracy of

the LS method. The same conclusion can be drawn for the case of A(t) 6¼ 0 and B(t) 6¼ 0, which is investi-
gated in Fig. 10.

2.4. High-order time-splitting methods

Given a differential equation, which can be written in the form
Fig. 9.

(c) Bt
t0
ft ¼ L1f þ L2f ; ð50Þ

where we denote ft for both derivative and partial derivative of f with respect to time t. Operators L1 and L2

can be general linear or nonlinear operators and there is no requirement that L1 and L2 commute.
The frequency responses of the LSEK with different Bt
t0 ðM ¼ 64; Mh ¼ 88; AðtÞ ¼ CðtÞ ¼ 0Þ. (a) Bt

t0 ¼ 0; (b) Bt
t0 ¼ h and

¼ 2h.



Fig. 10. The frequency responses of the LSEK with different Bt
t0 ðM ¼ 64; Mh ¼ 88; At

t0 ¼ h; CðtÞ ¼ 0Þ. (a) Bt
t0 ¼ 0; (b) Bt

t0 ¼ h and

(c) Bt
t0 ¼ 2h.
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The equation can be solved by a first-order time-splitting method from time t to time t + Dt in two steps.

One first solves
ft ¼ 2L1f ð51Þ

from t to t þ 1

2
Dt, followed by solving
ft ¼ 2L2f ð52Þ

from t þ 1

2
Dt to t + Dt.

The two time increments are each of length (1/2)Dt, which are denoted by {1/2, 1/2}. The second-order

method, which is known as ‘‘Strang splitting’’ [12], can be obtained by three steps. One first solves
ft ¼ 2L1f ð53Þ

from t to t þ 1

4
Dt, followed by solving
ft ¼ 2L2f ð54Þ

from t þ 1

4
Dt to t þ 3

4
Dt, then followed by solving
ft ¼ 2L1f ð55Þ

from t þ 3

4
Dt to t + Dt again. The three time increments are {1/4, 1/2, 1/4}.

A systematic way to obtain high-order time-splitting methods was given by Yoshida [16]. The coefficients

of methods of orders 1, 2, 4, 6 and 8 are listed in Table 2 [29]. Only the first half coefficients of the methods



Table 2

The first half coefficients of the time-splitting method

Method Time increment sequence

TS1 0.50000 00000 00000 00000

TS2 0.25000 00000 00000 00000 0.50000 00000 00000 00000

TS4 0.33780 17979 89914 40851 0.67560 35959 79828 81702

�0.08780 17979 89914 40851 �0.85120 71919 59657 63405

TS6 0.19612 84026 19389 31595 0.39225 68052 38778 63191

0.25502 17059 59228 84938 0.11778 66066 79679 06684

�0.23552 66927 04878 21832 �0.58883 99920 89435 50347

0.03437 65841 26260 05298 0.65759 31603 41955 60944

TS8 0.22871 10615 57447 89169 0.45742 21231 14895 78337

0.29213 43956 99000 73022 0.12684 66682 83105 67707

�0.29778 97250 73598 45089 �0.72242 61184 30302 57885

�0.40077 32180 57163 83322 �0.07912 03176 84025 08760

0.44497 46255 63618 95284 0.96906 95688 11262 99329

�0.00561 77738 38196 20526 �0.98030 51164 87655 40380

�0.46445 25958 95878 59173 0.05139 99246 95898 22035

0.45281 32300 44769 50634 0.85422 65353 93640 79233

‘‘TS’’ represents time-splitting method; ‘‘1,2,4,6,8’’ represents the first-, second-, fourth-, sixth- and eighth-order TS method.
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is given because all the coefficients are of central symmetry. For example, the fourth-order method has four
different coefficients, namely C1, C2, C3, C4, then one needs solve two equations alternatively in seven steps

while using the time increments {C1, C2, C3, C4, C3, C2, C1}. Respectively, the sixth-order method needs 15

steps and the eighth-order method needs 31 steps to advance the equation from time t to time t + Dt.
The above algorithm of the time-splitting (TS) method is commonly used to integrate many types of par-

tial differential equations because it is explicit and easy to program, requires less memory and is of high

accuracy. In additional, if the split steps which described by Eqs. (51) and (52) can be solved exactly, uncon-

ditional stability can always be achieved by this method. For example, in simulating Nonlinear Schrödinger

systems (NLS), the split steps usually can be solved analytically by using the Fourier spectral method.
Therefore, in this area, the TS method is predominantly used, rather than the Crank–Nicolson method

or the Runge–Kutta method, as the TS method is often more efficient.

2.5. The local spectral time-splitting method

Assume that a differential equation be written in the form
ft ¼ L1f þ L2ðf Þf ¼ AðtÞ o2

ox2
þ BðtÞ o

ox
þ CðtÞ

� �
f þ L2ðf Þf : ð56Þ
where L2 is a general operator, which can be a function of f.

This equation can be solved from time t0 to t by the LSTS method. First of all, the PDE is splitted into
two equations:
ft ¼ 2AðtÞ o
2

ox2
þ 2BðtÞ o

ox
þ 2CðtÞ

� �
f ð57Þ
and
ft ¼ 2L2ðf Þf : ð58Þ
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If Eq. (58) can also be solved analytically, the time splitting scheme is unconditionally stable. Alternatively

solving Eqs. (57) and (58) in several split steps, one obtains a high-order LSTS method.

Let us write the solution of Eq. (58) with initial condition f(x0, t0) as
f ðx; tÞ ¼ G x; t � t0; f ðx0; t0Þð Þ: ð59Þ

A pseudo-code of a second LSTS method for solving Eq. (56) from time t0 to T is the follows:

� Stage 1. Generate the LSEK Kh, r (x, t, t
0) by Eq. (43).

� Stage 2. Generate the initial condition: fi = f(xi, t0).

� Stage 3. The recursion

– DO k = 1, (T � t0)/Dt

– Solve Eq. (58) in 1

4
Dt : fi ¼ 2Gði; 1

4
Dt; fiÞ

– Solve Eq. (57) in 1
2
Dt : fi ¼

PM
j¼�MKh;r ðDx; t þ 1

2
Dt; tÞfj with Dx = (i � j)*h and

t ¼ ðk � 1Þ � Dt þ 1
4
Dt.

– Solve Eq. (58) in 1
4
Dt : fi ¼ 2Gði; 1

4
Dt; fiÞ

– END DO

Note that, in long time integrations, we just need to compute the set of LSEK weights once. In the case

that Eq. (58) cannot be integrated analytically, the numerical solution can be used in split steps. In such a

case, the stability constraint is still weaker than that of explicit schemes. In general, for a second-order
PDE, the time splitting scheme just requires Dt = O(h), while explicit methods, such as the fourth-order

Runge–Kutta method, require Dt = O(h2) [67].
3. Validation

In this section, we consider several examples that admit exact solutions to demonstrate the usefulness,

test the accuracy and explore the limitation of the proposed LSTS method. The spectral accuracy of the
LSEK is tested by the Wiener process. The Black–Scholes equation is employed to examine the LSEK

with non-zero convection and production coefficients. The heat equation is employed to validate the pro-

posed method for two-dimensional (2D) computations. A free propagating plane wave governed by the

Schrödinger equation is employed to investigate the parameter dependence of the LSEK. The proposed

LSTS method is further validated for its stability by the Zakharov system. Finally, the performance of

high-order LSTS methods is illustrated by a linear harmonic oscillator. Accuracy, stability and efficiency

of the proposed method are extensively compared with those of the FPTS over different boundary

conditions.
3.1. A linear hyperbolic equation

In order to validate the LSEK when A = 0, we consider the following linear hyperbolic equation:
ut þ gðtÞux ¼ 0; �1 < x < 1;

uðx; 0Þ ¼ u0ðxÞ; periodic:
ð60Þ
This problem is valuable since it is analytically solvable. The exact solution for given u(x, 0) can easily be

derived from Eqs. (16) and (28), and is a family of traveling waves given by u(x, t) = u0(x, t) for t P 0. The

solution u(x, t) is constant along the characteristics given by a ray x��g(t) dt = x0. We choose g(t) = t2 so
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that the solution shifts sufficiently fast for large t. The initial value in the present computation is chosen as

[30]
Table

Compa

Metho

Shann

Hermi

FP

FP-RK
u0ðxÞ ¼ sin4ðpxÞ: ð61Þ

The problem is numerically solved on interval [�1, 1] by using four different methods: the LSEK realized
with both the Shannon kernel and the Hermite kernel, Fourier pseudospectral (FP) method, and the FP

with fourth-order Runge–Kutta (FP-RK4). The first three methods integrate the PDE in a single time step

and are free of stability constraint. The errors of the LS method with the Shannon kernel and the Hermite

kernel at time t = 1, 5, 10 are listed in Table 3, and compared with those of the other two approaches. Peri-

odic boundary condition is used and the mesh size is set to h = 0.0625 in all four methods. As one can see

from Table 3, the Shannon kernel and Hermite kernel yield the machine accuracy at any time and the step

size can be arbitrarily large. On the contrary, the numerical solution of the FP-RK4 method blows up at

time t = 6 even with a very small time step, Dt = 0.001.

3.2. The Wiener process

The Wiener process describes a non-stationary Markov process. The governing Fokker–Planck equation

of the Wiener process can be written as
of ðx; tÞ
ot

¼ D
o2f ðx; tÞ

ox2
; ð62Þ
where D is the diffusion coefficient. When the initial condition is the d-function distribution at x0, the ana-
lytical solution of Eq. (62) is
f ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4Dpðt � t0Þ

s
exp � ðx� x0Þ2

4Dðt � t0Þ

 !
: ð63Þ
This system has been used as a standard example for testing numerical methods [75,78].

The Wiener process can be solved analytically by both the FP method and the LSEK. Therefore, numer-

ical results are obtained in one time step by both methods. In other words, once the initial condition is gi-

ven, the solution of the system at any time can be obtained without intermediate time stepping.
3

rison of errors of four numerical methods for the hyperbolic equation

d t Dt L1 L2

on 1.0 1.0 8.88E � 16 4.36E � 16

5.0 5.0 9.21E � 15 7.48E � 15

10.0 10.0 7.47E � 14 6.69E � 14

te 1.0 1.0 9.99E � 16 4.36E � 16

5.0 5.0 8.55E � 15 6.22E � 15

10.0 10.0 1.54E � 14 1.26E � 14

1.0 1.0 9.03E � 16 7.67E � 16

5.0 5.0 5.00E � 15 4.18E � 15

10.0 10.0 3.71E � 14 3.17E � 14

4 1.0 0.001 1.64E � 14 1.47E � 14

2.5 0.001 7.63E � 7 7.13E � 7

4.5 0.001 4.90E � 4 4.58E � 4

6.0 0.001 – –
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Consequently, the computation is extremely fast. In addition, since there is no error caused by the time inte-

gration, the performance of the local spectral method and the FP method can be fairly compared. The

LSEK adopts a Dirichlet boundary condition with an interval of [�10, 10] and a mesh size h = 0.4. The

LSEK parameters are chosen as M = 33, Mh = 88 and r = 3.05. Considering that the periodical boundary

condition is needed for the FP method, its computational interval is taken as large as [�12.8, 12.8] with the
mesh size h = 0.4. The initial d function is localized at x = 0. Fig. 11 shows the time evolution of the solu-

tion. As shown in Fig. 11, the exact solutions and numerical solutions by the LSEK are graphically indis-

tinguishable. Therefore, we further compare the L2 and L1 errors for both the LSEK and the FP method.

The results are listed in Table 4.

It is noted that at early time, t = 0.6 and t = 0.7, the accuracy of the Fourier pseudospectral method is

slightly higher than that of the LSEK because the solution peak is very sharp. From time t = 0.8 to t = 1.0,

the accuracies of two methods are almost the same, which means that the LSEK is of spectral order of accu-

racy for relatively smooth solutions. From time t = 1.2 to t = 2.0, the LSEK achieves even higher accuracy
than the FP method does because the error induced by the periodic boundary condition in the FP method

plays an important role at that time. The boundary effect is very dramatic at t = 3.0. Thus the LS method is

more flexible in this regard (see Table 4).

3.3. The Black–Scholes equation

Black and Scholes [79] published a paper entitled ‘‘The pricing of options and corporate liabilities’’ in

1973. Since then the growth of the field of derivative securities has been phenomenal. The Black–Scholes�
–6 –4 –2 0 2 4 6
0

0.1

0.2

0.3

0.4

x

f(
x,

t)

Fig. 11. The exact (dashed lines) and numerical solutions (solid lines) of the Wiener process in Section 3.2. The centerlines in the

descending order are at t = 0.6; 0.7; 0.8; 1.0; 1.2; 1.5; 2.0.

Table 4

Errors in the numerical solution of the Wiener process

Time LS FP

L1 L2 L1 L2

t = 0.6 1.254E � 13 1.777E � 13 1.388E � 16 2.642E � 16

t = 0.7 4.219E � 15 6.434E � 15 1.388E � 16 2.683E � 16

t = 0.8 2.220E � 16 3.226E � 16 1.665E � 16 2.614E � 16

t = 1.0 1.665E � 16 1.812E � 16 1.735E � 16 2.768E � 16

t = 1.2 8.327E � 17 1.052E � 16 4.186E � 16 3.653E � 16

t = 1.5 9.714E � 17 1.367E � 16 3.186E � 13 2.078E � 13

t = 2.0 1.942E � 16 2.517E � 16 2.544E � 10 1.733E � 10

t = 3.0 4.362E � 13 3.995E � 13 1.915E � 7 1.445E � 7
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general equilibrium formulation of the option pricing theory is attractive since the final valuation formulas

deduced from their model is a function of a few observable variables (except one, which is the volatility

parameter). The accuracy of the model can be ascertained by direct empirical tests with market data.

The well-known Black–Scholes equation is given as [80]
Table

Errors

Time

1.0

2.0

3.0

4.0

5.0
oc
ot

¼ m2

2
S2 o

2c

oS2
þ l S

oc
oS

� l c; ð64Þ
where S is the asset price which undergoes geometric Brownian motion, c(S, t) is the call price, mis the vol-

atility and l is the constant riskless interest rate. By a transformation
x ¼ ln S; ð65Þ
the Black–Scholes equation is cast into the following constant-coefficient parabolic equation
oc
ot

¼ m2

2

o
2c

ox2
þ l � m2

2

� �
oc
ox

� l c; �1 < x < 1; t > 0: ð66Þ
The solution of the above equation is known to be
cðx; tÞ ¼ 1

m
ffiffiffiffiffiffiffi
2pt

p exp �
xþ l � m2

2

	 

t

h i2
2m2t

� l t

0
B@

1
CA: ð67Þ
The numerical simulation of the Black–Scholes equation and its generalized versions is an important is-
sue in financial analysis and the computational finance community [81–83] because both computational

accuracy and efficiency are very important to option modeling and risk estimation. Obviously, the Black–

Scholes equation is an excellent test for the proposed LSEK because it involves non-zero coefficients of

diffusion, convection and production. The present method can provide both high accuracy and high effi-

ciency for this problem because it can be solved by the LSEK in a single time step. For simplicity, we

choose (1/2)m2 = 0.5 and l = 0.7 in our calculations. A sufficiently large computational domain [�10,

10] is used. The initial distribution is set to be the exact solution at time t = 0.5. Both L2 and L1 error

measures are used to evaluate the quality of the present method when the mesh size h is chosen as h = 0.5
and h = 0.25. As one can see, the machine accuracy is achieved, when h = 0.25, see Table 5. When the

spatial mesh size doubles, the accuracy at time t = 1.0 and t = 2.0 is lower because the peak of the solu-

tion is quite sharp at that time such that a finer mesh strategy is needed to obtain the best approxima-

tion. As the time evolves, the solution becomes smoother such that the machine accuracy is achieved

again when h = 0.5.
5

in the LS solution of the Black–Scholes equation

h = 0.5 h = 0.25

L2 L1 L2 L1

4.30E � 9 2.42E � 9 5.71E � 17 5.55E � 17

2.34E � 14 2.02E � 14 5.33E � 17 5.55E � 17

3.60E � 16 2.63E � 16 1.77E � 17 2.08E � 17

3.16E � 17 2.26E � 17 3.47E � 18 4.86E � 18

5.99E � 18 5.20E � 18 4.34E � 18 5.19E � 18
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3.4. 2D heat equation

The 2D heat equation is another benchmark problem because it admits the exact solution [69]. The equa-

tion can be written as
Table

Error

Time

t = 0.5

t = 1.0

t = 1.5

t = 2.0

t = 2.5

t = 3.0

t = 4.0
ouðx; y; tÞ
ot

¼ d2 o2uðx; y; tÞ
ox2

þ o2uðx; y; tÞ
oy2

� �
; ð68Þ
with an exact solution of the form
uðx; y; tÞ ¼ 1

4d2pt
exp �ðx� x0Þ2 þ ðy � y0Þ

2

4d2t

( )
: ð69Þ
The detailed LS method used for the 2D problem can be written as
uðx; y; t þ DtÞ ¼
XM
j¼�M

XM
k¼�M

Khx ;r ðx� xj;DtÞKhy ;r ðy � yk;DtÞuðxj; yk; tÞ: ð70Þ
In our computation, the heat equation is solved in a square domain [0, 10] · [0, 10]. An equal spatial dis-

cretization along x- and y-directions is employed, i.e., h = hx = hy = 0.3125. The parameter d is taken as 0.7

in Eq. (68). The LSEK parameters are the same as those given in the 1D case. The point (x0, y0) is the center

of the 2D square domain. The initial value is taken as the exact solution of the system, when t = 0.1. The

boundary condition for the LSEK is set to be zero outside the computational domain. The computational
errors with respect to the exact solution for both the LS method and the Fourier pseudospectral method are

listed in Table 6. When time t = 0.5, the solution is sharp so that the Fourier method is slightly more accu-

rate than the LSEK. However, the accuracy of the LSEK becomes much higher than that of the spectral

method from time t = 1.5 to t = 4.0 because the periodic boundary condition used by the spectral method is

not suitable anymore when time t > 1.5. The LSEK solutions of the heat equation at time t = 0.5 and t = 2.0

are shown in Fig. 12.

3.5. Plane wave propagation

To demonstrate the reliability of the LS method on highly oscillatory problems and to investigate the

dependence of the LS parameter M, Mh and r on time increment and oscillation frequency, we consider

the plane wave propagation process, which is governed by the Schrödinger equation
i
ouðx; tÞ

ot
¼ o2uðx; tÞ

ox2
; ð71Þ
6

analysis for 2D heat equation in Section 3.4

LS FP

L1 L2 L1 L2

3.468E � 7 5.054E � 7 1.704E � 7 1.927E � 7

3.260E � 8 6.284E � 8 4.689E � 7 9.119E � 7

1.213E � 8 3.080E � 8 2.195E � 5 5.083E � 5

6.771E � 9 2.117E � 8 1.380E � 4 3.722E � 4

4.530E � 9 1.663E � 8 3.952E � 4 1.217E � 3

3.348E � 9 1.398E � 8 7.109E � 4 2.663E � 4

2.161E � 9 1.098E � 8 1.674E � 3 7.018E � 3
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Fig. 12. LS solutions of the heat equation at time t = 0.5 (left chart) and t = 2.0 (right chart).
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uðx; tÞ ¼ uðxþ L; tÞ: ð72Þ
This system admits the traveling plane wave solution of the form
uðx; tÞ ¼ A expðiðkx� x tÞÞ: ð73Þ

Substituting Eq. (73) into Eqs. (71) and (72), one resolves that x = � k2 and the wavelength k = (2p/k).

In our computation, we employ the periodic boundary condition and compute this problem in a large

spatial interval L = [0, 80] in one time step. A total of 512 grid points are used for this interval, i.e.,

N = 512. The initial condition is taken as the solution of the system at t = 0. We define PPW = N * k/L,
which represents the average number of points per wavelength. As the wavenumber k varies, PPW changes

from 2.06 to 512.

Fig. 13 indicates the change of the error with respect to PPW. It is noted that when there are more than

four grid points per wave, the error is less than 10�14 if a suitable Mh is chosen. Moreover, as PPW in-

creases from 2 to 4, the error decreases exponentially. Stated differently, for a given wavenumber, the error
of the present local spectral method decreases exponentially as the number of grid points increases. This is a

common feature for all spectral methods [46].

Fig. 14 gives a phase diagram for the dependence of the parameter Mh on PPW. The parameter Mh

represents the highest degree of Hermite polynomial used in the LS method. In order to figure out the

trend of the parameter dependence of the LS method, we choose error tolerance tol = 10�12. As it can be

seen, Mh keeps increasing as PPW decreases because small PPW represents high oscillation which needs

high degree Hermite polynomials to attain high accuracy. Fig. 15 indicates the dependence of the param-

eter r on PPW. The error tolerance tol = 10�12 is also used. It is seen that the parameter r keeps increas-
ing as PPW decreases. In another words, the higher oscillatory the solution is, the larger r is needed to

achieve high accuracy. The dependence of the parameter M on PPW for given Mh and r is also investi-

gated. The results show that for PPW > 4, the high accuracy can always be achieved when M equals 33.

It is pointed out that there is a mismatch between parameters Mh and r in the above two tests. In fact, if

these parameters are matched as shown in Table 1, the accuracy level of 10�12 can be reached with

Mh = 10 when PPW � 4.

In order to investigate the dependence of the LS parameters on the time increment Dt in the plane-wave

case, we choose k such that there is only one wave in our computational domain, i.e., k = L, PPW = 512.
Fig. 16 indicates the dependence of the parameter M on the time increment Dt. It is noted that the
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Fig. 13. The changes of the errors with respect to PPW when the parameter Mh is optimized in Section 3.5; Dt = 0.01, M = 88 and

r = 3.05.

Fig. 14. A phase diagram for Mh and PPW. The errors are 1 · 10�12 on the curve, smaller than 1 · 10�12 above the curve and larger

than 1 · 10�12 below the curve. Other parameters are fixed as Dt = 0.01, M = 88 and r = 3.05.

Fig. 15. A phase diagram for r and PPW. The errors are 1 · 10�12 on the curve, smaller than 1 · 10�12 above the curve and larger than

1 · 10�12 below the curve. Other parameters are fixed as Dt = 0.01, M = 33, Mh = 88.
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Fig. 16. The dependence of the parameter M on Dt when the error tolerance is chosen as 1 · 10�12; PPW = 4.65, r = 3.05, Mh = 88.
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parameter M linearly depends on Dt. The larger the Dt is, the larger parameter M is needed. The reason is

obvious by comparing the present numerical result with the dispersion analysis in Fig. 6. A sufficiently large
M can always make the LSEK almost an ideal low-pass filter so that the spectral accuracy is achieved by the

LS method.

Fig. 17 indicates the dependence of the parameter Mh on Dt when M = 33. As one can see, when

Dt < 0.05, the spectral accuracy is achieved and a small Mh = 14 is chosen because there is only one wave

in the whole domain such that low degree Hermite polynomials are sufficiently good. When Dt > 0.05, the

error grows up as Dt increases. It is reasonable because in this case the spatial bandwidth r Dt is much larger

than the computational support given by M = 33. It is noted that an even smaller Mh is chosen in this case.

This can be explained from the dispersion analysis, Fig. 8. For a fixed M, a smaller Mh gives less oscillation
in the low frequency part of the LSEK in the Fourier domain.

3.6. The Zakharov system

To demonstrate the reliability of the LSTS method and investigate the computational cost of this

method, we consider the generalized Zakharov system (ZS), which can be described by the following

equations [67]:
Fig. 17

M = 33
iEt þ Exx � aNE ¼ 0; a < x < b; t > 0; ð74Þ
. Right figure: the dependence of the parameter Mh on Dt. Left figure: the changes of error in this case ; PPW = 4.65, r = 3.05,

.
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Ntt � ðN � mjEj2Þxx ¼ 0; a < x < b; t > 0; ð75Þ

with
Eðx; 0Þ ¼ E0ðxÞ; Nðx; 0Þ ¼ N 0ðxÞ; Ntðx; 0Þ ¼ N ð1ÞðxÞ; a 6 x 6 b; ð76Þ

Eða; tÞ ¼ Eðb; tÞ; Exða; tÞ ¼ Exðb; tÞ; t P 0; ð77Þ

Nða; tÞ ¼ Nðb; tÞ; Nxða; tÞ ¼ Nxðb; tÞ; t P 0: ð78Þ

In order to solve the problem, we split Eq. (74) into two equations,
iEt þ 2Exx ¼ 0 ð79Þ
and
iEt ¼ 2aNE: ð80Þ

The first equation can be solved analytically by the LSEK. The second equation can be solved by integrat-

ing it from t to t 0, whose solution can be written as
Eðx; t0Þ ¼ exp �i

Z t0

t
2aNðx; sÞ ds

 !
Eðx; tÞ: ð81Þ
Similar to the FPTS method for the Zakharov system given in [67], the detailed second-order LSTS method

from time t = tm to t = tm + 1 for the Zakharov system can be written as:
Nmþ1 � 2Nm þ Nm�1

Dt2
¼ Dxx Nm � mjEmj2

	 

; ð82Þ

E�ðxjÞ ¼
XM
k¼�M

Kh;r kh;
1

4
Dt

� �
Emðxj � khÞ; ð83Þ

E�� ¼ exp �i
Dt
2
2aðNm þ Nmþ1Þ=2

� �
E�; ð84Þ

Emþ1ðxjÞ ¼
XM
k¼�M

Kh;r kh;
1

4
Dt

� �
E��ðxj � khÞ; ð85Þ
where Dxx is defined as
Dxxf ðxjÞ ¼
XM
k¼�M

dð2Þ
h;r ðkhÞf ðxj � khÞ; ð86Þ
with dð2Þ
h;r ðkhÞ is given by Eq. (14). In fact, Jin et al. [31] proposed a better approach for integrating Eq. (75).

However, the detail of their scheme is beyond the scope of the present work.

Example 1. We choose a = 1 and m= � 1. The well-known solitary-wave solution of the ZS in this case is
Eðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B2ð1� C2Þ

q
sechðBðx� CtÞÞei½ðC=2Þx�ððC=2Þ2�B2Þt�; ð87Þ

Nðx; tÞ ¼ �2B2sech2ðBðx� CtÞÞ; �1 < x < 1; t P 0; ð88Þ

where B and C are constants. The initial condition is taken as



Table

Error
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Table
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FPTS

LSTS

g
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E0ðxÞ ¼ Eðx; 0Þ; N 0ðxÞ ¼ Nðx; 0Þ: ð89Þ

In our computation, we choose B = 1, C = 0.5. We solve the problem in the interval [�32, 32] with periodic

boundary conditions. Table 7 shows the numerical error of the FPTS and LSTS methods at time t = 2 with

different mesh size h and step size Dt. It is obvious that the LSTS and FPTS methods achieve almost the

same accuracy under the same discretization strategy and boundary conditions. The only difference is that

when the mesh size h is larger, the accuracy of the FPTS method goes to 10�8 as Dt decreases, which is
slightly higher than that of the LSTS method. However, when the mesh size h is fine enough, the LSTS

method performs exactly as well as the FPTS method.

It is well known that the FFT can be computed in O(N logN) operations. The FPTS method employs the
FFT, which makes the FPTS a computationally efficient method. The complexity of the LSTS method is

(2M + 1)N and scales as O(N) at a fixed level of accuracy. Table 8 shows the comparison of the computing

time needed by both the LSTS method and the FPTS method in solving the problem from time t = 0 to

t = 2 under the periodic boundary condition. Note that the LSTS operates at the same spectral level of

accuracy as that of the FPTS. Moreover, the periodic boundary condition is in favor of the FPTS. As

one can see, the computing time required by the LSTSmethod is slightly larger than that of the FPTSmethod.

However, the computing time of these two methods becomes closer and closer as the grid points N in-

creases. Asymptotically, the LSTS method could require less computing time than the FPTS method does.
For problems that does not require spectral accuracy, the LSTS method is much faster than the FPTS.

Since the time-splitting method is time reversible, we also investigate the time backward propagation

process for both methods. The numerical error of both methods for this case is listed in Table 9. As one
7

analysis of the FPTS and LSTS methods in the Zakharov system at time t = 2 in Example 1 in Section 3.6

Dt L2

h ¼ 1
4

h ¼ 1
8

E N E N

0.1 5.153E � 3 1.113E � 2 5.152E � 3 1.116E � 2

0.01 4.839E � 5 1.035E � 4 4.839E � 5 1.034E � 4

0.0025 3.024E � 6 6.459E � 6 3.024E � 6 6.459E � 6

0.000625 1.890E � 7 4.043E � 7 1.890E � 7 4.037E � 7

0.00015625 1.199E � 8 3.345E � 8 1.180E � 8 2.524E � 8

0.1 5.153E � 3 1.113E � 2 5.864E � 3 1.105E � 2

0.01 4.839E � 5 1.034E � 4 4.839E � 5 1.034E � 4

0.0025 3.024E � 6 6.459E � 6 3.024E � 6 6.459E � 6

0.000625 2.180E � 7 4.753E � 7 1.890E � 7 4.037E � 7

0.00015625 2.371E � 7 6.052E � 7 1.180E � 8 2.523E � 8

8

rison of computing time of the FPTS and LSTS methods in the Zakharov system at time t = 2; Dt = 0.000625 in Example 1 in

3.6

Computing time

h ¼ 1
4

h ¼ 1
8

h ¼ 1
16

h ¼ 1
32

h ¼ 1
64

h ¼ 1
128

4.844s 9.875s 21.109s 44.016s 92.875s 200.656s

6.844s 13.484s 26.938s 55.186s 108.356s 219.75s

29.2% 26.8% 21.5% 20.2% 14.3% 8.7%

¼ jt2�t1 j
t2 � 100%, where t1 represents the computing time of the FPTS, t2 represents the computing time of the LSTS.



Table 9

Error analysis of the FPTS and LSTS methods for time backward propagation in the Zakharov system at time t = 0 in Example 1 in

Section 3.6

Dt L2

h ¼ 1
4

h ¼ 1
8

E N E N

Backward 0.1 5.153E � 3 1.113E � 2 5.153E � 3 1.127E � 2

FPTS 0.01 4.839E � 5 1.034E � 4 4.839E � 5 1.034E � 4

0.0025 3.024E � 6 6.459E � 6 3.024E � 6 6.459E � 6

0.000625 1.890E � 7 4.042E � 7 1.890E � 7 4.037E � 7

0.00015625 1.200E � 8 3.345E � 8 1.180E � 8 2.524E � 8

Backward 0.1 5.153E � 3 1.113E � 2 9.663E � 3 1.145E � 2

LSTS 0.01 4.839E � 5 1.034E � 4 4.839E � 5 1.034E � 4

0.0025 3.024E � 6 6.459E � 6 3.024E � 6 6.459E � 6

0.000625 2.164E � 7 4.643E � 7 1.890E � 7 4.037E � 7

0.00015625 2.352E � 7 5.645E � 7 1.180E � 8 2.523E � 8

The initial condition is taken as the exact solution of this system when t = 2.
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can see, the backward propagation of the LSTS method is as efficient as the forward propagation of the

LSTS method. It is competitive with the backward propagation of the FPTS method.

Example 2. The standard ZS with a plane-wave solution is considered. We choose a = 1 and m= � 1 and

consider the problem on the interval [0, 2p]. The initial condition is taken as
Fig. 18
E0ðxÞ ¼ ei7x; N 0ðxÞ ¼ 1; Ntðx; 0Þ ¼ 0; 0 6 x 6 2p: ð90Þ

The plane wave solution is
Eðx; tÞ ¼ eið7x�x tÞ; ð91Þ

Nðx; tÞ ¼ 1; 0 6 x 6 2p; t P 0; ð92Þ

with x = 50.

We solve this problem by the LSTS method. A total of 256 grid points are used on the interval [0, 26p]
(i.e., 19 grid points in the interval [0, 2p]). Fig. 18 shows the numerical solution of Example 2. It is seen that
by using only 2.71PPW, the numerical solution agrees with the exact plane wave solution extremely well.
. The real part of E at t = 2 in Example 1 in Section 3.6. Solid line: exact solution given in Eq. (91); �+++�: numerical solution.
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3.7. Linear harmonic oscillator

To investigate the performance of high-order LSTS methods, we consider a linear Harmonic oscillator,

which is described by the following Schrödinger equation:
Table

Errors

Metho

First-o

Second

Fourth
i
ow
ot

¼ � 1

2

o2w
ox2

þ x 2x2

2
w: ð93Þ
The ground state of the harmonic oscillator is
/ ðxÞ ¼ x
p

	 
1=4
exp � x x2

2

� �
: ð94Þ
The lowest energy of the harmonic oscillator is E0 = (1/2)x , thus
wðx; tÞ ¼ expð�iE0tÞ/ ðxÞ ð95Þ

is an exact solution of Eq. (93). In order to solve the problem, we split Eq. (93) into two equations:
i
ow
ot

¼ � o2w
ox2

; ð96Þ

i
ow
ot

¼ x 2x2w: ð97Þ
The first one can be solved by the LSEK analytically and the second one can be integrated analytically from

time t to t 0
wðx; tÞ ¼ exp �iðt � t0Þx 2x2
� �

wðx; t0Þ: ð98Þ
By alternatively solving these two equations in 2, 3 and 7 split steps, one obtains the first-, second- and

fourth-order LSTS method. We also solve this problem by the FPTS method to compare the accuracy

of both methods. In our computation, a sufficiently large interval [�30, 30] is chosen. Two hundred and

fifty six grid points are used for this interval, i.e., N = 256. The initial condition is taken as the solution

of this system, when t = 0. Periodic boundary condition is used for both methods. The numerical solutions

are compared with the exact solutions at t = 1.

Table 10 shows the error analysis for the linear harmonic oscillator. It is noted that high accuracy can be

achieved by using high-order time-splitting methods. Smaller step size Dt can also achieve higher accuracy.
The LSTS method can give the same order of accuracy as the FPTS method does under the same discret-

ization strategy.
10

analysis for linear harmonic oscillator in Section 3.7

d Step size FPTS LSTS

L1 L2 L1 L2

rder Dt = 0.01 1.803E � 3 2.975E � 3 1.795E � 3 2.975E � 3

Dt = 0.001 1.803E � 4 2.975E � 4 1.795E � 4 2.975E � 4

-order Dt = 0.01 4.740E � 6 7.724E � 6 4.717E � 6 7.724E � 6

Dt = 0.001 4.740E � 8 7.724E � 8 4.717E � 8 7.724E � 8

-order Dt = 0.01 2.095E � 10 4.007E � 10 2.095E � 10 4.007E � 10

Dt = 0.001 3.586E � 13 6.180E � 13 2.418E � 13 4.685E � 13
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4. Application

In this section, the LSTS method is applied to Fishers� equation, the generalized nonlinear Schrödinger

equation, the ground state and the time evolution of Bose–Einstein condensates and the nonlinear Schrö-

dinger equations in semi-classical regime. The FPTS method is employed for a comparison.

4.1. Fisher’s equation

Fisher�s equation was introduced to represent the evolution of the population due to diffusion and non-

linear local multiplication [84]. The 1D nonlinear parabolic partial differential equation, which describes the

kinetic advancing rate of an advantageous gene, can be written as
ou
ot

¼ l
o2u
ox2

þ quð1� uÞ; x 2 ð�1;1Þ; t > 0; ð99Þ
where the positive quantities l and q are the diffusion coefficient and the reaction factor, respectively. Eq.
(99) also provides a prototype model for a spreading flame [85] and a model equation for the finite domain

evolution of neutron population in a nuclear reactor [86].

By use of the transformation x: = (1/l )1/2x, Fisher�s equation returns a simpler form
ou
ot

¼ o2u
ox2

þ quð1� uÞ: ð100Þ
The non-local initial and boundary conditions for Fisher�s equation are given as
uðx; 0Þ ¼ u0ðxÞ 2 ½0; 1�; x 2 ð�1;1Þ; ð101Þ

lim
x!�1

uðx; tÞ ¼ 1; lim
x!1

uðx; tÞ ¼ 0; ð102Þ
with the x derivative tending to zero as x ! ±1 and the assumption that the saturation level is unity.

Properties of Fisher�s equation have been studied theoretically by many authors, including Fisher [84],

Kolmogorov et al. [85], Canosa [86], Larson [87], Hagan [88], etc. For the non-local conditions, it is proved

that there is a traveling wave solution to Eq. (99) with a wave speed c. Because the accurate and reliable

numerical representation of the traveling wave solution to Fisher�s equation is an interesting and challeng-

ing numerical problem, the traveling wave solution of Fisher�s equation has also been studied numerically
by many researchers, using the method of accurate space derivatives (ASD) [90], finite differences [89], finite

elements [91], the DSC [54], as well as many others [92,93].

The superspeed wave solution [92] satisfying Eq. (99) is employed in the present numerical study
uðx; tÞ ¼ 1þ exp

ffiffiffi
q
6

r
x� 5q

6
t

� �� ��2

: ð103Þ
The non-local boundary conditions, which are commonly used in the literature [90,91], are given as
uðxL; tÞ ¼ 1; uðxR; tÞ ¼ 0: ð104Þ
In order to solve the problem by the LSTS method, Fisher�s equation is split into two equations:
ou
ot

¼ 2
o2u
ox2

þ 2qu ð105Þ
and



Table

Numer

Schem

LSTS

DSC-R

FP-RK

CNFD

ASD
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ou
ot

¼ �2qu2: ð106Þ
The first equation can be solved by the LSEK analytically. The second equation can be integrated from

time t0 to time t analytically
uðx; tÞ ¼ uðx; t0Þ
1þ 2qðt � t0Þuðx; tÞ

: ð107Þ
Fourth-order time-splitting method is used in the present local spectral method in our computation. We
consider q = 1 in solution (103). The computational domain is chosen to be sufficiently large [�64, 64].

In order to compare with other methods, the fourth-order Runge–Kutta (RK4) is used for the DSC and

Fourier pseudospectral method (FP) methods. A detailed comparison of the LSTS, DSC-RK4, Crank–

Nicolson finite difference (CNFD), FP-RK4 is given in Table 11. It can be seen that the LSTS method al-

ways has accuracy comparable to the DSC-RK4 and FP-RK4 methods, and these three schemes achieve

very high accuracy.

The mesh strategies in Table 11 are specially designed [54]. First, in order to test the temporal accuracy

order, the spatial resolution is chosen as sufficiently fine and kept unchanged. For high-order methods, such
as the LSTS, the DSC-RK4 and the FP-RK4, Dx = 1.0 is fine enough. While for CNFD method, Dx is set

to be 0.25 since the second-order finite difference scheme is used for spatial discretization in this method. In

addition, Dx could not be too small for three explicit schemes, the DSC-RK4, FP-RK4 and ASD, because

of the stability constraint for the mesh ratio Dt/Dx. However, the present LSTS method is both explicit and

unconditionally stable so that stable numerical solutions can still be obtained when Dx = 0.25 and D t = 0.2,
11

ical errors in solving a scaled Fisher�s equation by using the LSTS, DSC-RK4, CNFD, FP-RK4, and ASD

e Dx Dt t = 5.0 t = 10.0

L1 L2 L1 L2

0.25 0.2 2.22E � 6 7.46E � 6 2.28E � 6 7.91E � 6

1.0 0.2 2.21E � 6 7.47E � 6 2.28E � 6 7.92E � 6

1.0 0.1 1.39E � 7 4.68E � 7 1.43E � 7 4.96E � 7

2.0 0.01 3.62E � 5 1.31E � 4 3.89E � 5 1.51E � 4

1.0 0.01 2.35E � 9 6.24E � 9 2.73E � 9 6.65E � 9

K4 1.0 0.2 1.34E � 5 2.74E � 6 5.61E � 5 1.17E � 5

1.0 0.1 9.00E � 7 1.84E � 7 3.86E � 6 8.03E � 7

2.0 0.01 4.35E � 6 9.38E � 7 3.12E � 6 6.50E � 7

1.0 0.01 1.59E � 9 2.50E � 10 1.39E � 9 2.06E � 10

4 1.0 0.2 1.34E � 5 2.74E � 5 5.61E � 5 1.17E � 5

1.0 0.1 9.01E � 7 1.84E � 7 3.86E � 6 8.03E � 7

2.0 0.01 3.16E � 6 6.75E � 7 3.21E � 6 6.76E � 7

1.0 0.01 1.27E � 9 1.38E � 10 4.40E � 10 8.78E � 11

0.25 0.2 5.18E � 3 1.10E � 3 1.43E � 2 2.99E � 3

0.25 0.1 1.35E � 3 2.91E � 4 4.25E � 3 8.88E � 4

2.0 0.01 1.02E � 2 1.87E � 3 5.47E � 2 1.16E � 2

1.0 0.01 2.66E � 3 4.84E � 2 1.46E � 2 3.06E � 3

1.0 0.2 3.84E � 2 7.24E � 3 1.09E � 1 2.19E � 2

1.0 0.1 1.96E � 2 3.73E � 3 5.62E � 2 1.14E � 2

2.0 0.01 1.99E � 3 3.83E � 4 5.67E � 3 1.18E � 3

1.0 0.01 1.99E � 3 3.83E � 4 5.72E � 3 1.18E � 3
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which is the same mesh strategy used for the CNFD method. Second, we choose a sufficiently fine temporal

resolution, i.e., Dt = 0.01, and keep it unchanged to test the spatial accuracy order.

In terms of the L2 error, the error decreasing rates of each scheme are recalculated from Table 11 and are

presented in Table 12. The numerical results indicate that the spatial accuracy order of the LSTS method is

extremely high and comparable with the DSC-RK4 and FP-RK4 methods. The temporal discretization or-
ders of the LSTS, DSC-RK4 and FP-RK4 are all approximately O(Dt4). The spatial and temporal accuracy

orders of the CNFD method are of O(Dx2) and O(Dt2), respectively. For the ADS method, the approxima-

tion errors are introduced fully by temporal discretization and the temporal accuracy order is of O(Dt), see
Ref. [54] for more details.

4.2. The generalized nonlinear Schrödinger equation

The nonlinear Schrödinger equations (NLS) has important applications in fluid dynamics, nonlinear op-
tics, and plasma physics. It has been investigated analytically and numerically by many authors [94–97].

The generalized nonlinear Schrödinger equation can be written as
Table

Nume

Time

t = 5.0

t = 10.
iut � uxx þ qðjuj2Þu ¼ 0; x 2 ½xL; xR�; t > 0; ð108Þ

ujx¼xL
¼ 0; ujx¼xR

¼ 0; ð109Þ
where q(s) can be chosen as q(s) = sp, p > 0, q(s) = s/(1 + s) or q(s) = ln(1 + s) in different physical problems.

In order to solve this problem, we split Eq. (108) into two parts:
iut ¼ 2uxx ð110Þ

and
iut ¼ �2qðjuj2Þu: ð111Þ

The first equation can be solved analytically by the LSEK. To solve the second one, multiplying it by u, the
conjugate of u, one obtains
iut�u ¼ �2qðjuj2Þjuj2: ð112Þ

Subtracting the conjugate of Eq. (112) from Eq. (112) and multiplying by �i, one obtains
d

dt
juj2 ¼ 0: ð113Þ
Therefore, |u|2 is independent of time in the second equation from time t to t 0, whose solution can be written

as
uðx; t0Þ ¼ exp 2iðt0 � tÞqðjuðx; tÞj2Þ
	 


uðx; tÞ: ð114Þ
12

rically tested accuracy order of the four methods

Halve LSTS DSC-RK4 Scheme FP-RK4 FDCN ASD

Dt 3.99 3.89 3.894 1.92 0.96

Dx 14.36 11.87 12.26 1.95 3.77E � 5

0 Dt 4.00 3.86 3.86 1.75 0.94

Dx 14.47 11.62 12.91 1.92 1.22E � 4
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By alternatively solving the above two equations in several split steps, one can solve Eq. (108) from time tm
to tm + 1 by the LSTS method.

Example 1. The cubic Schrödinger equation

1. One-soliton solution. First, we consider the initial-value problem
iut � uxx � 2juj2u ¼ 0; t > 0; ð115Þ

ujt¼0 ¼ u0ðxÞ ¼ sechðxþ 2Þ exp½�2iðxþ 2Þ�: ð116Þ
The exact solution is
uðx; tÞ ¼ sechðxþ 2� 4tÞ exp½�ið2xþ 4� 3tÞ�: ð117Þ

In our computation, a sufficiently large interval [�20, 20] is chosen and N = 256. The step size Dt is
0.01. The soliton solution is computed from t = 0 to t = 1. We solve this problem by both the LSTS

and FPTS methods. The first-, second- and fourth-order splitting schemes are adopted in both meth-

ods. To compare the results, periodic boundary condition is used in both methods. Fig. 19 shows the

propagation of the solitary wave in this problem. Table 13 shows the L1 and L2 errors of the

numerical solutions with respect to the exact solutions for both methods. As we can see, the LSTS

and FPTS give exactly the same accuracy.
2. Collision of two solitons. Second, we consider interacting solitons for the cubic Schrödinger equation

(115) with the initial condition
ujt¼0 ¼ u0ðxÞ ¼sechðx� 10Þ exp½�ið2x� 20Þ� ð118Þ
þ sechðxþ 10Þ exp½ið2xþ 20Þ�: ð119Þ
The exact solution of the initial-value problem (115) and (119) is
uðx; tÞ ¼ sechðx� 10þ 20tÞ exp½�ið2x� 20� 3tÞ� þ sechðxþ 10� 20tÞ exp½ið2xþ 20þ 3tÞ�: ð120Þ
Fig. 19. LSTS solutions at different times for Example 1 in Section 4.2.



Table 13

Errors analysis for Example 1.1 in Section 4.2

Method L1 L2

FPTS First-order 4.049E � 3 8.060E � 3

Second-order 8.922E � 5 1.093E � 4

Fourth-order 2.703E � 7 3.435E � 7

LSTS First-order 4.049E � 3 8.060E � 3

Second-order 8.922E � 5 1.093E � 4

Fourth-order 2.703E � 7 3.435E � 7
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In our computation, a sufficiently large interval [�20, 20] is chosen and N = 256. The step size Dt is 0.01.
The soliton solution is computed from t = 0 to t = 1. In order to compare the results, the periodic boundary

condition is used in both the LSTS and FPTS methods. Fig. 20 shows the interaction of two solitary wave

in this problem. As one can see, the two waves move in the opposite directions. After their interaction, both

the solitary waves keep their original shapes and velocities. Our numerical results are consistent with the

wave interaction theory. Table 14 shows the L1 and L2 errors of the numerical solutions by both the FPTS

and LSTS methods. It is noted that exactly the same accuracy is achieved again by the LSTS and FPTS

methods.

Example 2. Plane wave soliton for the GNLS equation
iut � uxx þ qðjuj2Þu ¼ 0; ð121Þ
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Fig. 20. LSTS solutions at different times for Example 2 in Section 4.2.



Table 14

Errors analysis for Example 1.2 in Section 4.2

Method L1 L2

FPTS First-order 4.054E � 3 1.140E � 2

Second-order 8.838E � 5 1.546E � 4

Fourth-order 2.671E � 7 4.852E � 7

LSTS First-order 4.054E � 3 1.140E � 2

Second-order 8.838E � 5 1.546E � 4

Fourth-order 2.671E � 7 4.852E � 7

Table

Errors

Metho

FPTS

LSTS
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uðxþ LÞ ¼ uðxÞ: ð122Þ

The problem admits a progressive plane wave solution
uðx; tÞ ¼ A exp½iðkx� x tÞ�; ð123Þ

with w = �k2 � q(A2). In our computation, we set A = 2,k = p, L = 2. The mesh size is h = 0.3125 and the
step size is Dt = 0.01. The plane wave solution is computed from t = 0 to t = 2p/|x | on interval [0, 20L]. The

periodic boundary condition is used in both methods. Table 15 shows the L1 and L2 errors of the numer-

ical solutions by both the FPTS and LSTS methods. As one can see, very high accuracy has been achieved

even when the first-order time-splitting method is used. The FPTS method performs slightly better than the

LSTS method does in this case because the plane wave solution is band limited in the Fourier domain,

which is the most suitable kind of functions to be approximated by the FP method.

4.3. The ground state solution of Bose–Einstein condensates

Since the first experimental realization of Bose–Einstein condensates (BECs), there has been a great deal

of work which theoretically and numerically describes the single particle properties of BECs by using the
15

analysis for Example 2 in Section 4.2

d q(S) L1 L2

First-order S2 6.167E � 14 1.616E � 13

� 4S
Sþ1

3.496E � 14 8.473E � 14

ln(1 + S) 3.537E � 14 9.031E � 14

Second-order S2 1.870E � 14 3.794E � 14

� 4S
Sþ1

3.406E � 14 8.516E � 14

ln(1 + S) 3.350E � 14 9.086E � 14

Fourth-order S2 1.984E � 12 1.858E � 12

� 4S
Sþ1

4.740E � 14 1.561E � 13

ln(1 + S) 3.983E � 14 1.150E � 13

First-order S2 4.453E � 14 1.359E � 13

� 4S
Sþ1

4.883E � 14 1.540E � 13

ln(1 + S) 4.903E � 14 9.318E � 14

Second-order S2 4.703E � 14 1.056E � 14

� 4S
Sþ1

5.604E � 14 1.550E � 13

ln(1 + S) 4.561E � 14 1.018E � 14

Fourth-order S2 1.254E � 12 7.637E � 12

� 4S
Sþ1

4.550E � 13 2.760E � 12

ln(1 + S) 6.311E � 13 3.900E � 12
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Gross–Pitaevskii equation (GPE) [98,99]. The interaction of particles is described by a mean field which

leads to a nonlinear term in the GPE. The results obtained from the GPE show good agreement with

the experiments [100–102]. One of the fundamental problems in the BEC is to find the ground state solution

of the GPE. The numerical study of the ground state of the GPE has been of interest to many authors

[33,103,104] in recent years.
We consider the following dimensionless Gross–Pitaevskii equation under the normalization in three

spatial dimensions:
i
ow
ot

¼ � 1

2
Dwþ V ðxÞwþ bjwj2w; x 2 X; t > 0; ð124Þ

wðx; tÞ ¼ 0; x 2 C ¼ oX; t P 0; ð125Þ

where
V ðxÞ ¼ 1
2
ðc2xx2 þ c2y y

2 þ c2z z
2Þ: ð126Þ
An important invariant of Eq. (124) is the energy
EbðwÞ ¼
Z

X

1

2
jrwðx; tÞj2 þ V ðxÞjwðx; tÞj2 þ b

2
jwðx; tÞj4

� �
dx; t P 0: ð127Þ
To find the ground state of Eq. (124), we write
wðx; tÞ ¼ e�il t/ ðxÞ; ð128Þ

where l is the chemical potential of the condensate and / satisfies the following equation:
l/ ðxÞ ¼ �1
2
D/ ðxÞ þ V ðxÞ/ ðxÞ þ bj/ ðxÞj2/ ðxÞ; x 2 X; ð129Þ

/ ðxÞ ¼ 0; x 2 C; ð130Þ

with normalization condition
Z

X
j/ ðxÞj2 dx ¼ 1: ð131Þ
This is an eigenvalue problem and the eigenvalue is given by
l ¼ Ebð/ Þ þ
Z

X

b
2
j/ ðxÞj4 dx: ð132Þ
The non-rotating BEC ground state solution / g(x) is a real non-negative function found by minimizing the

energy Eg(/ ) under the constraint (129) [105]. To compute the minimizer of the energy functional Eb(/ ), it
is natural to adapt the following splitting scheme, which was widely used in the physics literature

[104,106,107] for computing the ground state solution of BECs:
/ t ¼ � 1

2

dEbð/ Þ
d/

¼ 1
2
D/ � V ðxÞ/ � bj/ j2/ ; x 2 X; tn < t < tnþ1; n P 0;

ð133Þ

/ ðx; tnþ1Þ ¼ / ðx; tþnþ1Þ ¼
/ ðx; t�nþ1Þ
/ ð�; t�nþ1Þ
�� �� ; ð134Þ

/ ðx; tÞ ¼ 0; x 2 C; ð135Þ

where we denote iÆi = iÆiL2(X).
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In fact, the above algorithm can be viewed as firstly applying the steepest decent method to the energy

functional Eb(/ ) without constraint by Eq. (133), then projecting the solution back to the unit sphere by

Eq. (134) in order to satisfy the normalization condition.

For d = 1, we have
/ t ¼ 1
2
/ xx � V ðxÞ/ � bj/ j2/ ; x 2 X ¼ ða; bÞ; tn < t < tnþ1; n P 0; ð136Þ

/ ðx; tnþ1Þ ¼ / ðx; tþnþ1Þ ¼
/ ðx; t�nþ1Þ
/ ð�; t�nþ1Þ
�� �� ; ð137Þ

/ ða; tÞ ¼ / ðb; tÞ ¼ 0; t P 0: ð138Þ

In order to solve the problem by the second-order LSTS method from time tm to time tm + 1, Eqs. (136) and

(137) are solved in four steps. First, one solves
/ tðx; tÞ ¼ �2V ðxÞ/ ðx; tÞ � 2bj/ j2/ ðx; tÞ ð139Þ
from time tm to tm þ 1
4
Dt. The solution of Eq. (139) is given by Bao and Du [33]
/ ðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðxÞe�2V ðxÞðt�tmÞ

V ðxÞþbð1�e�2V ðxÞðt�tmÞÞj/ j2

q
/ ðx; tmÞ; V ðxÞ 6¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ4bðt�tmÞj/ j2
q

/ ðx; tmÞ; V ðxÞ ¼ 0:

8><
>: ð140Þ
Then one solves
/ t ¼ / xx ð141Þ

analytically by the LSEK from time tm þ 1

4
Dt to tm þ 3

4
Dt, followed by solving Eq. (139) from time tm þ 3

4
Dt

to tm + 1. Finally, one let
/ ðx; tmþ1Þ ¼
/ �ðx; tmþ1Þ
/ �ðx; tmþ1Þk k ; ð142Þ
where / *(x, tm + 1) is the value calculated from the previous step.

Example 1. We consider two cases:

1. The linear case (b = 0) with a double-well potential,
V ðxÞ ¼ 1

2
ð1� x2Þ2; b ¼ 0; / 0ðxÞ ¼

1

ð4pÞ1=4
e�x2=8; x 2 R: ð143Þ
2. A nonlinear case (b > 0) with a harmonic oscillator potential,
V ðxÞ ¼ x2

2
; b ¼ 60; / 0ðxÞ ¼

1

ðpÞ1=4
e�x2=2; x 2 R: ð144Þ
Cases 1 and 2 are solved, respectively, on [�16, 16] and [�8, 8] with a mesh size h = 1/32. We solve
the problems by both the LSTS and FPTS methods with periodic boundary conditions. Fig. 21 shows

the evolution of the energy Eb(/ ) for different time steps Dt. As one can see, the LSTS and the FPTS

give exactly the same result under the same time step in both cases. Even a larger time step is used, i.e.,

Dt = 0.2 in case 1 and Dt = 0.05 in case 2, the numerical results converge to the energy of the ground

state.
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Fig. 21. Energy evolution for Example 1 in Section 4.3. Left figure for case 1. Right figure for case 2.
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Example 2. Ground state solution of 1D BECs with harmonic oscillator potential
Fig. 22

3.1371
V ðxÞ ¼ x2

2
; / 0ðxÞ ¼

1

p1=4
e�x2=2; x 2 R: ð145Þ
In our computations, the mesh size h is 1/8 and time step Dt is 0.001. The problem is solved in interval

[�16, 16] by both the FPTS and LSTS methods with periodic boundary condition. Fig. 22 shows the

ground state solution / g(x) and energy evolution for different b. The result agrees very well with the solu-

tion obtained by Bao and Du [33].

Example 3. Ground state solution of BECs in 2D:
V ðx; yÞ ¼ 1
2
ðc2xx2 þ c2y y

2Þ: ð146Þ
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. Ground state solution / g for Example 2 in Section 4.3. Right figure: Energy evolution for different b. Left figure: For b = 0,

, 12.5484, 31.371, 62.724, 156.855, 313.71, 627.42, 1254.8 (with decreasing peak).
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The initial condition is chosen as
/ 0ðx; yÞ ¼
ðcxcyÞ

1=4

p1=2
e�ðcxx2þcy y

2Þ=2: ð147Þ
To quantify the ground state solution / g(x,y), we define the radius mean square
arms ¼ a/ 2
g

��� ���
L2ðXÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
a2/ 2

gðx; yÞ dx dy
s

: ð148Þ
In our computation, cx = 1, cy = 4, b = 200 and the problem is solved by the LSTS on X = [�8, 8] · [�4, 4]

with mesh size hx = 1/8, hy = 1/16 and step size Dt = 0.001. We obtain the following results from the ground

state solution / g:
xrms ¼ 2:2734; yrms ¼ 0:6074; / 2
gð0; 0Þ ¼ 0:0808; Ebð/ gÞ ¼ 11:1563; l g ¼ 16:3377:
These results are the same as those given by Bao and Du [33]. Fig. 23 shows the surface plot of the ground

state solution / g.

4.4. The time evolution of Bose–Einstein condensation

To find the dynamics of a Bose–Einstein condensation, we consider the Gross–Pitaevskii equation given

in Section 4.3
i
ow
ot

¼ � 1

2
Dwþ V ðxÞwþ bjwj2w; x 2 X; t > 0: ð149Þ
For the 1D case, we have
i
ow
ot

¼ � 1

2
wxx þ V ðxÞwþ bjwj2w; x 2 X; t > 0; ð150Þ
with V(x) = c2x2/2.
We use both the FPTS and LSTS methods to solve Eq. (150), i.e., we integrate
i
ow
ot

¼ �wxx ð151Þ
analytically by the LSEK in (1/4)Dt, before we solve
i
ow
ot

¼ 2V ðxÞwþ 2bjwj2w ð152Þ
in (1/2)Dt. Finally, we solve
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Fig. 23. Ground state solutions / g for Example 3 in Section 4.3.
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i
ow
ot

¼ �wxx ð153Þ
in (1/4)Dt again. The initial condition w0(x) is chosen as the ground state of the 1D GPE (150) with c= 1

and b = 50, which are obtained from Example 2 in Section 4.3.

In our computation, a sufficiently large interval [�12, 12] is chosen and 1024 grids points are used on this

interval. Step size Dt is 0.001. We let c= 2 in Eq. (150) according to an experimental setup, where initially

the condensate is assumed to be in its ground state, and the trap frequency is double at t = 0.

To quantify the numerical results, we define the condensate width
r 2
x ¼

Z
x2jwðx; tÞj dx: ð154Þ
Fig. 24 shows the time evolution of central density and condensate width of the wavefunction. It is noted

that the LSTS and FPTS methods give identical results for this problem, which are the same as the ones

given in [32].

4.5. The Schrödinger equation in the semiclassical regime

The Schrödinger equation with a small (scaled Planck) constant � can describe many problems in solid

physics,
�u�t � i
�2

2
Du� þ iV ðxÞu� ¼ 0; t 2 R; x 2 Rd ; ð155Þ
where V(x) is a given electrostatic potential, 0 < � � 1. The position density can be computed by
n�ðx; tÞ ¼ ju�ðx; tÞj2 ð156Þ

and the current density can be computed by
J �ðx; tÞ ¼ �Imðu�ðx; tÞru�ðx; tÞÞ ¼ 1

2i
ðu�ru� � u�ru�Þ; ð157Þ
where ‘‘ — ’’ denotes complex conjugation.

It is well known that the convergence of u� as � ! 0 is not strong because Eq. (155) propagates oscilla-

tions of wavelength � in space and time. The oscillatory nature of Eq. (155) provides several numerical bur-

dens. In order to attain correct results of the position density and current density, one must fully resolve the
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. Evolution of the central density and condensate width for the problem in Section 4.4. Solid lines represent the results by the

�+++� represents the results by the FPTS. Left figure: Central density |w(0, t)|2, the small figure inside is the amplifications of a

f the left figure; Right figure: Condensate width r x.
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spatial–temporal oscillations numerically, i.e., use many grid points per wavelength of O(�). In Ref. [108],

Markowich et al. show that the following constraint is needed to guarantee good approximations for small

�,
h ¼ oð�Þ; Dt ¼ oð�Þ: ð158Þ

Bao et al. [34] employed the FPTS to solve this problem. Due to the exponentially high-order accuracy

of spectral method, it allows the mesh size one order of magnitude larger than the finite difference method

provided [108]. Bao et al. [34] prove that the mesh strategy
h ¼ Oð�Þ; Dt ¼ oð�Þ ð159Þ
conserves the position density and gives a uniform L2-approximation of the wavefunction. Nevertheless,
they confirm that the correct results of the position and current densities can be obtained with much weaker

constraints
h ¼ Oð�Þ; Dt ¼ Oð1Þ: ð160Þ
In our computation, we use the LSTS method to solve Eq. (155) and compare our results with those of the

FPTS and finite difference method. Our numerical results show that the same mesh strategy
h ¼ Oð�Þ; Dt ¼ Oð1Þ ð161Þ

works very well for the LSTS method.

For d = 1, the problem becomes
�u�t � i
�2

2
u�xx þ iV ðxÞu� ¼ 0; a < x < b; t > 0; ð162Þ

u�ða; tÞ ¼ u�ðb; tÞ; u�xða; tÞ ¼ u�xðb; tÞ; t > 0: ð163Þ

The detailed second-order LSTS method from time tm to tm + 1 can be written as
u�;� ¼ exp �iV ðxÞDt=2�ð Þu�;m; ð164Þ

u�;��ðxjÞ ¼
XM
k¼�M

Kh;r kh;
1

2
Dt

� �
u�;�ðxj � khÞ; ð165Þ

u�;mþ1 ¼ exp �iV ðxÞDt=2�ð Þu�;m: ð166Þ
For a comparison, we define the Crank–Nicolson LS method (CNLS):
u�;mþ1 � u�;m

Dt
¼ i�

4
ðDxxu�;mþ1 þ Dxxu�;mÞ �

iV ðxÞ
2�

ðu�;mþ1 þ u�;mÞ; ð167Þ
where Dxx is the LS differential operator approximating and is defined by Eq. (86). The other two schemes

used for the comparison are the Crank–Nicolson finite difference method (CNFD) and the FPTS method.

In our computation, the initial condition is always chosen in the classical WKB form
u�ðx; t ¼ 0Þ ¼ u�0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0ðxÞ

p
eiS0ðxÞ=�: ð168Þ
Example 1. The initial condition is taken as
n0ðxÞ ¼ ðe�25ðx�0:5Þ2Þ2; S0ðxÞ ¼ � 1

5
ln e5ðx�0:5Þ þ e�5ðx�0:5Þ� �

; x 2 R: ð169Þ
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h
�
¼ Oð1Þ; ð170Þ
the numerical solutions convergence (in the weak sense) to the limit solution as � ! 0.
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We solve the problem in the interval [0, 1], i.e., a = 0 and b = 1 with periodic boundary conditions. Let

V(x) = 10 be a constant potential. The weak limits of Example 1 at t = 0.54 are given by Bao et al. [34]. We

compute the solution of this problem in one step by the LSTS and FPTS methods because there is no time-

discretization error for the constant potential. Fig. 25 shows the numerical solutions at t = 0.54 for Example

1 by using both the LSTS and FPTS methods.

In order to show the importance of the time-splitting scheme, we consider the CNLS method. Fig. 26

shows the numerical solutions at t = 0.54 in Example 1 when � = 0.001 by both the LSTS and CNLS
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methods. The mesh size for both methods is the same, h = 1/512. The LSTS method solves the problem in

one time step, while the high oscillation of the solution in time takes the CNLS method 54,000 steps to get a

comparable result. It is indicated that the correct mesh strategy for CNLS is
h
�
¼ Oð1Þ; Dt

�
¼ oð1Þ: ð171Þ
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The LSTS method shows great advantage in this case because it solves this system analytically. Therefore,

even the solution of this system highly oscillates in time, the step size of the LSTS method can be arbitrarily

large.

We then compare the difference between the LS and finite difference discretizations. A very small step
size Dt is chosen for both CNLS and CNFD methods to significantly reduce temporal discretization errors.

Fig. 27 shows the numerical solution of these two methods at t = 0.54 for different mesh size h. As one can

see, the CNFD method requires a much smaller mesh size than the CNLS method does to attain a similar

result. It is indicated that the mesh strategy for the CNFD method should be
h
�
¼ oð1Þ; Dt

�
¼ oð1Þ: ð172Þ
Example 2. The initial condition is taken as
n0ðxÞ ¼ ðe�25ðx�0:5Þ2Þ2; S0ðxÞ ¼ 0:2ðx2 � xÞ: ð173Þ
Let V(x) = 100 be the constant potential. The weak limit of Example 2 at t = 0.54 is given in Ref. [34].

Fig. 28 shows the numerical solution by both the LSTS and FPTS methods at t = 0.54 for Example 2 with

different combinations of �,h. A similar conclusion can be drawn as in Example 1.

In the next example, we perform tests on the LSTS for inhomogeneous potentials.

Example 3. The initial condition is taken as
n0ðxÞ ¼ ðe�25ðx�0:5Þ2Þ2; S0ðxÞ ¼ xþ 1: ð174Þ
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Let V(x) = x2/2. The weak limit is given in [34]. We solve the problem in the interval [�2, 2] with periodic

boundary conditions. Fig. 29 shows the numerical solutions at t = 0.52, t = 3.6 and t = 5.5 by both the

LSTS and FPTS methods with Dt = 0.02 and (i) � = 0.04, h ¼ 1
16
, (ii) � = 0.0025, h ¼ 1

256
, (iii)

� = 0.00015625, h ¼ 1
4096

. The numerical solutions converge (in the weak sense) to the weak limit as � ! 0.
5. Conclusions

This paper proposes a local spectral time-splitting (LSTS) method for solving partial differential equa-

tions. The LSTS method is developed by combining a local spectral evolution kernel (LSEK) with standard

high-order time-splitting methods. The LSEK is derived from the Hermite function expansion of a time

evolution operator. The spectral accuracy of the proposed local spectral method is validated by extensive

experiments in one- and two-spatial dimensions with the Fokker–Planck equation, the heat equation, the
linear and nonlinear Schrödinger equations. The frequency responses of the LSEK are analyzed by the dis-

crete Fourier transform and the parameter dependence of the LSEK is investigated by simulating traveling
Table 16

Nomenclature

A(t) Coefficients of the second-order derivative

B(t) Coefficients of the first-order derivative

C(t) Coefficients of the function

At
t0 ;B

t
t0 ;C

t
t0 X t

t0 ¼
R t
t0 X ðsÞ ds, X = A, B, C

|fæ Dirac notation, ket vector

Æf| Dirac notation, bra vector

Æf|gæ Inner product, Æf|gæ = �f*(x)g(x)dx
Æx|fæ Æx|fæ = f(x), the position representation of vector |fæ
Hn(x) Hermite polynomials

h The grid spacing

hn(x) Hermite function, hn(x) = exp(�x2)Hn(x)

K(x,x 0,t,t 0) Evolution operator

Kh,r (x,t,t
0) Local spectral evolution kernel

K̂h;r ðx Þ The Fourier transform of the LSEK

k Wave number

k Wave number operator

L1(R) The L1 norm space

L1 Maximum absolute error measure

L2(R) The Hilbert space

L2 Root mean squared error measure

l[int] The lth derivative

M[int] The width of the stencils on one side

Mh[int] The highest degree of the Hermite function

n[int] The degree of the Hermite function

N[int] The total number of grid points

r The ratio of r and h, r = r /h
Xx,Xy Self-evident quantities in 2D, X =M, K, h, r , N
Z + The set of all positive integers

Dt Time step

d(x) The delta distribution

dh,d(x) DSC kernels

k Wave length

x Angular frequence

r The width of the Gaussian regularizer



Table 17

Abbreviation

ASD Accurate space derivative (method)

BECs Bose–Einstein condensates

CFL The Courant–Friedrich–Lewy (constraint)

CNFD Crank–Nicolson finite difference (method)

CNLS Crank–Nicolson local spectral (method)

DSC Discrete singular convolution (method)

DSC-RK4 Discrete sigular convolution with fourth-order Runge–Kutta

FP Fourier pseudospectral (method)

FP-RK4 Fourier pseudospectral with fourth-order Runge–Kutta

FPTS Fourier pseudospectral time splitting (method)

FFT Fast Fourier transform

GPE Gross–Pitaevskii equation

KdV The Korteweg–de Vries equation

LS Local spectral (method)

LSEK Local spectral evolution kernel

LSTS Local spectral time splitting (method)

NLS The nonlinear Schrödinger equation

PPW Points per wavelength

TS Time-splitting (method)

ZS The Zakharov system
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plane waves. The computing time and efficiency of the LSTS method are compared with those of the Fou-

rier pseudospectral time splitting (FPTS) method in solving the Zakharov system. The high-order LSTS

methods are validated by the exact solution of linear harmonic oscillator. The proposed method is applied

to the generalized nonlinear Schrödinger equation to further verify its robustness. The LSTS method is em-

ployed to solve the ground state and time evolution of the Bose–Einstein condensation. Numerical results

in these applied problems further demonstrate the efficiency of the LSTS method. Finally, the LSTS sim-

ulations are carried out for the Schrödinger equations in the semi-classical regime, which is a severe test for

many other existing methods. Excellent consistence is obtained with the results available in the literature.
In summary, the proposed LSTS method has the following features:

� The LSTS is an explicit, weaker stability constraint, time reversible method. It is unconditionally stable

for many problems whose two split parts are both analytically integrable. The LSEK adopts a uniform

grid mesh. For a given problem, one just needs to compute the weights of the LSEK once for the whole

computation.

� As a local spectral method, the LSTS offers controllable accuracy in both spatial and temporal dis-

cretizations. It can be of spectral accuracy in space and arbitrarily high-order accuracy in time, if
these are desirable for the problem under study. By simply adopting high degree Hermite polynomi-

als, the LSTS method can deal with highly oscillatory problems, i.e., high frequency problems.

� The complexity of the LSTS method is (2M + 1)N and scales as O(N) at a fixed level of accuracy. There-

fore, the LSTS is usually faster than the FPTS. However, under the periodic boundary condition and

operating at the spectral level of accuracy for highly oscillatory problems, the LSTS requires slightly

more CPU time (about 20%) than the FPTS does for a small N. Nevertheless, asymptotically, the LSTS

method requires less CPU time than the FPTS method does as the complexity of the latter scales as

O(NlogN).
� As a local spectral method, the LSTS has the same flexibility as finite difference methods in handling

complex boundary conditions. It is a method of choice whenever the FPTS does not apply due to the

boundary condition.
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� The LSTS serves as a good alternative to the FPTS method because of its flexibility in choosing grid

points and handling boundary conditions.
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